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Abstract

This paper models a war of attrition that evolves over time. Two players �ght over

a prize until one surrenders. The �ow costs of �ghting depend on a state variable that

is public but changes stochastically as the war unfolds. In the unique equilibrium,

each player surrenders when the state becomes adverse enough; for intermediate states,

both players �ght on. In an extension, the baseline model is augmented to allow the

players to unilaterally concede part of the prize. Such concessions can be bene�cial

if they disproportionately sap the opponent's incentive to �ght. The evolving war of

attrition with concessions yields predictions regarding delay and the eventual division

of the prize that di�er from conventional models of bargaining as well as reputational

wars of attrition.
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1 Introduction

The war of attrition is a model with wide applicability in economics and politics. Two

�rms in a duopoly engaging in a price war (Fudenberg and Tirole, 1986); an activist group

boycotting a �rm (Egorov and Harstad, 2017); a government facing a protest movement; two

political parties delaying a �scal adjustment in hopes of shifting blame onto the other party

(Alesina and Drazen, 1991); or a protracted military con�ict, such as the Western Front of

World War I, can all be understood as wars of attrition.

In the classic war of attrition (Smith, 1974; Hendricks, Weiss and Wilson, 1988), two

players �ght over a prize by paying �ow costs until one surrenders. Both the value of the

prize and the costs of continuing the war are deterministic and publicly known. As is well

known, this model allows for equilibria in which either player surrenders immediately, as

well as an equilibrium in which either player may win, and the length of the war is random

(Fudenberg and Tirole, 1991). Therefore, the classic model is silent on the crucial questions

of which player should win the war, and how long it will take before the loser concedes.1

The assumption that payo�s are perfectly predictable not only leads to a multiplicity of

equilibria. It also elides a crucial feature of most practical applications: the fact that, as

they unfold, wars change in unexpected ways that may favor either player. For example,

take the case of two ride-sharing companies that cut prices in an attempt to drive each other

out of business. Both �rms expect to lose money, but cannot know how their market shares

will change over time, or how much capital they can raise to survive; this information is only

revealed as the price war progresses. Similarly, in the middle of a prolonged protest, neither

the government nor the protesters know how public opinion will shift as the stalemate drags

on. And weather changes (Winters, 2001), as well as unexpected battle�eld outcomes, can

change the course of (literal) wars.

Motivated by these observations, this paper models a war of attrition that evolves over

time. The model presented is identical to the classic war of attrition, except that there is a

state of the world, θt, which is commonly observed at all times, changes stochastically over

time, and a�ects the �ow costs that players must pay to continue the war. In the baseline

model, θt parameterizes the extent to which current conditions in the war favor one player

over the other: high values of θt mean high costs for player 1 and low costs for player 2,

while low values of θt mean the opposite.

1Some papers in this literature (e.g., Smith (1974), Bliss and Nalebu� (1984), Maskin and Tirole (1988),
Kapur (1995), Wang (2009), Pitchford and Wright (2012), Montez (2013)) sidestep the issue of equilibrium
multiplicity by focusing on the mixed strategy equilibrium with no instantaneous concession. This is a
sensible approach only when the players are symmetric; in the asymmetric case, the mixed equilibrium gives
the weaker player (that is, the one with higher cost-to-prize ratio) a higher chance of winning�an implausible
prediction.
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Under mild assumptions, the game has a unique equilibrium, with the following structure.

So long as θt lies in a certain interval, referred to as the disputed region, both players continue

�ghting, and they have strict incentives to do so. When θt reaches an extreme enough value

as to leave the disputed region, the disadvantaged player surrenders. In particular, both

players have positive winning probabilities, yet the equilibrium is in pure strategies, and

there is no immediate surrender�in fact, under some conditions, the length of the war is

bounded away from zero. In these ways, the equilibrium di�ers qualitatively from those

obtained in the classic war of attrition as well as reputational perturbations of it (Abreu

and Gul, 2000). The equilibrium also has sensible comparative statics: if a player's prize

increases or her cost decreases, her probability of winning increases, both because she is more

willing to �ght and because her increased belligerence makes victory harder to attain for the

opponent.

The baseline model is closely related to the �war of information� modeled in Gul and

Pesendorfer (2012). Gul and Pesendorfer model two parties that provide costly information

to a voter about which party is better; the voter's changing posterior serves as the state

variable. In equilibrium, only the �trailing� party wants to provide information, which leads

to a speci�c formulation of the cost functions. The model in this paper extends Gul and

Pesendorfer (2012) by allowing simultaneously for general cost functions, discounting, and

a state variable that may drift in one player's favor or be multi-dimensional (see Appendix

C). In particular, I provide conditions on these underlying objects that are general enough

as to be tight, in a sense I make precise.

I then use the baseline model to perform two exercises. First, I consider the limit of the

solution as the movement of the state θt becomes arbitrarily slow. This limit equilibrium is

an equilibrium of the classic war of attrition, albeit one augmented with a payo�-irrelevant,

changing state variable. I show that, if the players' cost-prize ratios di�er, the stronger

player (with a higher prize or lower cost) wins immediately.2 However, when the players

are evenly matched, the limit equilibrium leverages the state variable θt as a coordination

device, and it features less average delay than the mixed equilibrium of the classic war of

attrition, though still a positive amount.

Second, I show how the evolving war of attrition can be extended to allow for additional

actions besides continuing to �ght and surrendering completely. In particular, I allow the

players to unilaterally concede part of the prize to the opponent, and then keep �ghting

over the rest. For example, in the context of a protest, the government may cede to some,

but not all, of the protesters' demands, in an attempt to defuse the protest at the lowest

2This matches the predictions of reputational models (e.g., Abreu and Gul (2000)), as long as the players'
probabilities of being �commitment types� are taken to zero at similar speeds.
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possible cost. This exercise is uniquely tractable in my setting, relative to reputational

models, because a concession does not carry signaling content.3 I characterize the optimal

use of concessions when only one player is able to make concessions, and provide partial

results for the case in which both can do so. The general principle that arises is that partial

concessions can be worthwhile, but only if they reduce the opponent's incentive to �ght more

than the conceder's. In particular, making concessions is never useful if both players value

di�erent parts of the prize equally (for example, if the prize is simply a pot of money), but

it may be optimal if the prize is heterogeneous, with the two players valuing certain parts

disproportionately (as may be the case with territory). Furthermore, it may be the case that

in equilibrium some concessions are made, but they do not exhaust the prize, so a smaller

con�ict over the remainder follows. When both players can make concessions, the setup I

study can be taken as a model of bargaining under extreme lack of commitment, meaning

that a concession by one player cannot be conditioned on the opponent giving up something

else in return.

Besides the works already mentioned, this paper is related to four broad strands of

literature. First, many variants of the war of attrition obtain equilibrium selection by adding

reputational concerns. This approach, applied to exit in duopoly (Fudenberg and Tirole,

1986), entry deterrence (Kreps andWilson, 1982; Milgrom and Roberts, 1982) and bargaining

(Abreu and Gul, 2000), generally yields a unique equilibrium when the players have a positive

probability of being �irrational� types who never surrender. A central result of this literature

is that, even when extreme types are rare, the incentive to pretend to be extreme has a

powerful e�ect on the equilibrium behavior of all types.4 In our model, a related, but less

in�uential role, is played by dominance regions at very high or low values of θt.

Whereas in reputational models there is private information, and �ghting is a costly

signal of resolve, in my model there is symmetric uncertainty, and �ghting is a gamble that

the war will turn in the player's favor. This distinction is empirically relevant. For instance,

in a duopoly, a credible revelation of �nancial statements, or an act of corporate espionage,

could radically alter a reputation-driven price war or end it immediately, while it would have

no impact on a war sustained by shared expectations of an uncertain future. As noted above,

the two settings diverge further if additional actions are available: a partial concession may

be a smart play that saps the opponent's motivation to �ght, but in a reputational model,

it may be taken to signal weakness.

Secondly, there is a small but growing literature on dynamic games with a changing state

3By contrast, adding partial concessions to the classic war of attrition would not yield sharp predictions
due to the extreme multiplicity of equilibria.

4This striking result has some extreme implications. For instance, if one player's probability of being
irrational is arbitrarily small, and the other's is zero, the second player must surrender immediately.
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of the world. For instance, Ortner (2016) studies a game of bargaining with alternating o�ers

where the bargaining protocol (i.e., the identity of the player making o�ers) is driven by a

Brownian motion. Ortner (2017) considers two political parties bargaining in the shadow of

an election; if an agreement is reached, the result a�ects the relative popularity of the parties,

which otherwise evolves as a Brownian motion and eventually determines the outcome of the

election. In Ortner (2013), optimistic players bargain over a prize whose value changes over

time. The closest paper in this group is a contemporaneous paper by Georgiadis, Kim and

Kwon (2022), which also models a war of attrition with a changing state of the world that

a�ects both players. The crucial di�erence is that, in Georgiadis et al. (2022), changes in

the state a�ect both players equally, while in this paper they a�ect the players in opposite

ways. An interpretation in the duopoly setting is that the state in Georgiadis et al. (2022)

tracks the size of the market, while in this paper it tracks market shares. This di�erence

leads to contrasting results: in Georgiadis et al. (2022), the equilibrium is unique only if the

players' incentives to �ght di�er substantially, and in every equilibrium the identity of the

�rst player to quit is known in advance. In Appendix C, I show that both their model and my

benchmark model are nested in a model with a two-dimensional state with a common-values

dimension and an adversarial dimension. That model reduces to my benchmark model when

only the second dimension changes over time, and to Georgiadis et al. (2022) when only the

�rst one changes. I �nd that, in the general case in which both dimensions change over time,

my results survive�that is, there is a unique equilibrium, and either player may be the �rst

to quit.

Third, the paper is related to a body of work on con�ict in international relations (Smith,

1998; Slantchev, 2003a,b; Powell, 2004). The closest paper in this family, Smith (1998),

models a war in which the players �ght over a sequence of �forts�, the players' payo�s depend

on how many forts they hold, and either player may surrender at any time. While this setting

is prima facie similar to the one in this paper, the model in Smith (1998) has a potentially

large set of equilibria that cannot be fully characterized in general.

Finally, the present paper also contributes to the literature on supermodular games

started by Topkis (1979) and Milgrom and Roberts (1990). My approach exploits the fact

that the war of attrition is a supermodular game when players' strategies are ordered in

opposite ways (i.e., player 1's �high� strategy is to continue while player 2's is to surrender).

The way in which perturbing the state leads to equilibrium uniqueness is also reminiscent

of results in global games (Morris and Shin, 1998) and related work (Burdzy, Frankel and

Pauzner, 2001).

The paper proceeds as follows. Section 2 presents the baseline model in discrete time,

characterizes its equilibrium and comparative statics, and then presents a continuous time
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version. Section 3 discusses the results in the context of existing models, and analyzes the

limit of the solution as the state is made to change arbitrarily slowly. Section 4 extends the

model to allow for partial concessions. All the proofs are found in Appendices A and B.

Appendix C presents a generalized model with a multi-dimensional state.

2 The Model

There are two players, 1 and 2. We �rst study a discrete-time model with in�nite horizon:

t = 0, 1, . . . In each period, each player can choose to continue (C) or surrender (S). There

is a state of the world θt ∈ [−M,M ] which is common knowledge at all times. θt represents

how favorable the current conditions are to either player: a high θt favors 2, while a low θt

favors 1. The initial θ0 is given by Nature. Then it evolves according to a Markov process

described by

P (θt+1 − θt ≤ x|θt) = Fθt(x),

where Fθ : R → [0, 1] is an absolutely continuous c.d.f. with corresponding density fθ. We

assume that, for some value of η > 0:

A1 fθ is continuous in θ for all θ ∈ [−M,M ]. More precisely, the mapping θ 7→ fθ is

continuous, taking the 1-norm in the codomain.

A2 Fθ is weakly FOSD-increasing in θ for all θ ∈ [−M + η,M − η]. In other words, if

θ, θ′ ∈ [−M + η,M − η] and θ ≥ θ′ then Fθ(x) ≤ Fθ′(x) for all x.

A3 For all θ ∈ [−M,M ], supp(Fθ) is a closed interval with nonempty interior, contained

in [−η, η] ∩ [−M − θ,M − θ].

The only substantively important assumption out of these is A2: it says that θ tends to

drift to the extremes rather than to the middle. In particular, it rules out mean-reverting

processes. A1 says that small changes in θt induce small changes in θt+1, while A3 assumes

that θt does not change by more than ±η between periods, and always stays within [−M,M ].

Payo�s are as follows. In any period in which the war is ongoing, each player i pays a

�ow cost ci(θ). If either player chooses to surrender at time t, players do not pay �ow costs

in that period and the war ends. When the war ends, the winner receives an instantaneous

payo� Hi and the loser receives Li < Hi, normalized to 0.5 If both players surrender on the

5A player who receives Hi from winning, Li from surrendering and a �ow payo� −ci(θ) while the war
continues has identical incentives to one who receives Hi+ρ from winning, Li+ρ from losing and �ow payo�
−ci(θ) + ρ(1− δ) while the war continues.

6



same turn, they both lose.6 The players have a common discount factor δ ∈ [0, 1].7 Hence,

i's lifetime payo� if the war ends at time T is:

Ui(σi, σj) = δTHi1{i wins} −
T−1∑

t=0

δtci(θt).

We assume the following about the players' payo� functions:

B1 c1(θ) is strictly increasing in θ, and c2(θ) is strictly decreasing in θ.

B2 c1(θ), c2(θ) are C
1.

B3 There are M1, M2 such that −M < −M1 < 0 < M2 < M and c1(−M1) = c2(M2) = 0.

B4 The following inequalities are satis�ed:

c2(−M1)
M −M1 − η

η
> H2

c1(M2)
M −M2 − η

η
> H1.

B5 Hi >
−ci(θ)
1−δ for i = 1, 2 and all θ ∈ [−M,M ].

B6 δHi > c1(θ) + c2(θ) for i = 1, 2 and all θ ∈ [−M,M ].

Substantively, Assumption B1 says that player 1 is favored when θ is low, and vice versa.

Thus, changes in the state a�ect the players in opposite ways. (Appendix C generalizes the

results to a setting with a multidimensional state that can a�ect payo�s in richer ways.) B3

says that, for favorable enough values of θ, players actively enjoy �ghting. B4 guarantees

that, when the state is so favorable to one player that she will be in favor of �ghting for

a long time, it is best for the other player to surrender. B5 says that players never enjoy

�ghting so much that they would rather continue �ghting than win immediately. Finally,

B6 guarantees that �ow costs are low enough that at least one player is always willing to

continue if the war is expected to end in the next period.

Out of these assumptions, B3 is the least innocuous and hence worth discussing. In some

contexts, it is reasonable that a player facing a favorable state of the world would obtain

positive net �ow payo�s from continuing the war, relative to surrendering. For example,

in a price war between two duopolists, Assumption B3 re�ects that, when a �rm has high

6This assumption simpli�es some formal arguments but is not essential, as players will never surrender
simultaneously in equilibrium.

7δ = 1 does not lead to issues involving in�nite utility since it is never rational to continue the war forever.
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enough market share, it can turn a pro�t even before the other �rm exits the market. In

a dispute between a �rm and an activist group, in which θ represents the state of public

opinion, the �rm's pro�ts might increase if public opinion turns against the activist group,

in which case the boycott turns into free publicity for the �rm; conversely, if public opinion

turns against the �rm, activists may obtain (possibly non-pecuniary) payo�s from hurting

the �rm's bottom line, or from increased funding or exposure for their other causes.

In other examples�for instance, if the game represents the siege of a city by an attacking

army�Assumption B3 is less plausible. However, we would obtain much the same results by

assuming that, if the state of the world becomes extreme enough�formally, if θt goes above

(below) some threshold�then the war is over in a material sense and player 1 (2) is forced

to surrender, for instance, due to bankruptcy or death.

Our equilibrium concept is Subgame Perfect Equilibrium (SPE). In general, we denote a

strategy for player i by ψi, where ψi(h) is the probability that i continues at history h. If ψ1

is such that player 1 continues i� θ(h) ≤ θ∗, we say ψ1 is a threshold strategy with threshold

θ∗. Similarly, if ψ2 is such that player 2 continues i� θ(h) ≥ θ∗, ψ2 is a threshold strategy

with threshold θ∗.

Analysis

Our �rst main result characterizes the unique subgame perfect equilibrium (SPE) of the

game.

Proposition 1. There is an essentially8 unique SPE. The equilibrium is in threshold strate-

gies: there are θ∗ < θ∗ such that player 1 surrenders whenever θt > θ∗, player 2 surrenders

whenever θt < θ∗, and neither player surrenders when θt ∈ (θ∗, θ
∗).

The equilibrium partitions the set of possible states [−M,M ] into three intervals: player

2's surrender region, [−M, θ∗); player 1's surrender region, (θ
∗,M ]; and between them the

disputed region, [θ∗, θ
∗], in which both players choose to continue the war.

The intuition behind the proof of Proposition 1 is as follows. First, if θ is very low,

then player 1 never has an incentive to surrender: even if she expects to eventually lose, she

should stay in the war until θ goes above −M1 (i.e., until her costs become positive). Then,

since the gap between −M1 and −M is large (Assumption B4), there will be low enough

values of θ for which player 2 is forced to surrender immediately, since waiting for player 1

to surrender will be too costly. Similarly, for very high values θ, player 2 will never want to

surrender, so player 1 must concede immediately.

8There is equilibrium multiplicity in the sense that players are indi�erent at their thresholds, but as long
as θ0 ̸= θ∗, θ∗, this does not matter.
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For values of θ between these extremes, behavior will depend on expectations about the

other player's strategy. For instance, if 2 plays a �hawkish� strategy in equilibrium�that

is, she surrenders only for a small set of values of θ�this incentivizes 1 to play a �dovish�

strategy, which surrenders at a large set of values of θ, and vice versa. Formally, the game is

supermodular, if we order the strategy sets so that surrender is the �high� action for player

1 and the �low� action for player 2. Hence, as is standard in supermodular games, there is a

greatest and a smallest equilibrium that all other equilibria are bounded between (Milgrom

and Roberts, 1990). Because the best response to a threshold strategy is another threshold

strategy, and the greatest and the smallest equilibrium can be obtained as iterated best

responses to threshold strategies, they are themselves in threshold strategies.

The �nal step of the proof is to show that the greatest and the smallest equilibrium

coincide. The key observation at this point is the following. Letting Ti(x) denote i's optimal

threshold when player j uses threshold x, we show that the mappings T1, T2 are contractions.

Thus there is a unique equilibrium in threshold strategies, which must be both the greatest

and the smallest equilibrium.

Here is an intuition as to why T1 is a contraction. Suppose that player 1's best response

to a threshold θ∗ is a threshold θ∗ and her best response to a threshold θ∗ + ε is a threshold

θ′ ≥ θ∗+ε, where ε > 0. It can be shown that players must be indi�erent at their thresholds,

so equivalently, player 1 is indi�erent about surrendering in state θ∗ when facing threshold

θ∗, and weakly prefers to continue in state θ∗ + ε when facing threshold θ∗ + ε.

If we compare the resulting disputed regions in both scenarios, namely [θ∗, θ
∗] and [θ∗ +

ε, θ′], there is a clear contradiction. Indeed, in the latter scenario, player 1's payo� from

continuing the war when at her threshold is worse for three reasons. First, since the new

disputed region is made up of higher states, her �ow costs over the course of the war are

expected to be higher (Assumption B1). Second, because the stochastic process governing

(θt)t is not mean-reverting (Assumption A2), in the new disputed region, the drift of the

state θt is weakly less favorable to her. Third, if θ′ > θ∗ + ε, the disputed region is larger, so

it will take longer on average for the state to travel to player 2's surrender region.

From this discussion, it also follows that Assumptions A2 and B1 are jointly �tight� in

the following sense: suppose that the ci(θ) and Fθ are all constant in θ over some open

interval I ⊆ [−M,M ], so that A2 is satis�ed, and B1 is violated only slightly (i.e., there

are cost functions arbitrarily close to the ci which satisfy B1). Then, for any θ ∈ I such

that Ti(θ) ∈ I, T ′
i (θ) = 1. In addition, T1(θ), T2(θ) ∈ I for any θ ∈ I if we take H to be

small enough. Hence, if H is small enough, then (T1 ◦ T2)′(θ) = 1 over some interval, which

allows for multiple �xed points and hence multiple (indeed a continuum of) equilibria.9 Thus

9Alternatively, by analogous arguments, uniqueness is recovered if we require the ci to be only weakly
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we cannot relax B1 any further and still guarantee that Proposition 1 will hold, unless we

tighten A2. Conversely, we can relax A2 only if we tighten B1.

We can interpret the thresholds θ∗, θ
∗ as parameterizing two features of the equilibrium.

The size of the disputed region, θ∗−θ∗, re�ects how willing the players are to �ght to increase

their odds of winning the war. The position of the disputed region, [θ∗, θ
∗] within the interval

[−M,M ] re�ects any asymmetries between the players. For example, if f and the �ow costs

are symmetric then θ∗ + θ∗ = 0, while if θt tends to drift to the right, or c1(θ) > c2(−θ)
(player 1 has higher costs), then θ∗ + θ∗ < 0, and so on.

Our next result characterizes the comparative statics of the model.

Proposition 2.

(i) Increases in H1 and decreases in c1 raise θ∗, θ
∗ and θ∗ − θ∗. Increases in H2 and

decreases in c2 lower θ∗ and θ∗ but raise θ∗ − θ∗.

(ii) An increase in Fθ for all θ (in the FOSD sense) lowers θ∗ and θ∗.

Part (i) of Proposition 2 says that, if a player's prize from winning increases or her cost

decreases, her surrender region shrinks, her opponent's surrender region expands, and the

size of the disputed region expands. The logic is as follows: if H1 goes up, for instance,

this directly increases player 1's incentive to continue �ghting, taking as �xed all the other

parameters as well as player 2's strategy. Then player 1 shrinks her surrender region, which

induces player 2 to expand her own. This incentivizes player 1 to shrink her surrender region

further, and so on. Iterating this argument brings us to the new equilibrium thresholds. The

new disputed region is made up of higher states�that is, states preferred by player 2. In

order to leave player 2 indi�erent at her new threshold�despite her now �ghting over more

favorable states�the size of the disputed region, θ∗ − θ∗, must grow.

Part (ii) says that a similar logic applies to changes in the drift of the stochastic process

(θt)t: making the evolution of the state more favorable to one player shrinks her surrender

region and expands her opponent's.

The results in Proposition 2 can be translated into statements about changes in the

players' winning probabilities and winning times. Formally, let Pi(t) be the probability that

player i will win by time t. Then Proposition 2 implies that, if Hi increases, then Pi(t)

increases for all t and Pj(t) decreases for all t. Analogous statements hold for changes in ci

or Fθ.

monotonic but require Fθ to be strictly FOSD-increasing.
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Continuous Time Model

An important special case of the baseline model, in which we can obtain a sharper description

of equilibrium, is the following. Assume that the underlying time index t is continuous, but

that the players only make decisions at a discrete sequence of times: t ∈ {0,∆, 2∆, . . .}.
Let δ = e−γ be the discount factor over a unit of time. Suppose that the state θt evolves

according to a drift-di�usion process with re�ecting boundaries at −M and M , given by the

expression

dθ = µ(θ)dt+ σdBt,

where (Bt)t is a Brownian motion, σ > 0 is �xed, and µ(θ) is continuous (A1) and weakly

increasing in θ (A2).10 We can assume that costs ci(θt) also accrue continuously, and let

c̃i(θt) = E
[� t+∆

t
e−γ(τ−t)ci(θτ )dτ |θt

]
be the expected cost between t and t+∆ based on the

interim evolution of the state.

In this special case, Propositions 1 and 2 apply in a straightforward fashion for any value

of ∆ > 0. As we take the limit ∆ → 0, we obtain a continuous-time version of the model in

which the players can surrender at any moment t ∈ [0,+∞); they discount the future at a

common rate γ ≥ 0; and, while the war continues, they pay instantaneous �ow costs ci(θt)

(i = 1, 2) satisfying Assumptions B1-5.11

Denote the best-response threshold functions from the previous section by T∆
i , highlight-

ing the dependence on the time ∆ between decisions. It is not hard to show that for any

x, T∆
i (x) converges as ∆ → 0 to T 0

i (x), i's optimal threshold in response to an opponent's

threshold of x in the continuous-time game. And the same arguments used in the discrete

time setting show that T 0
1 , T

0
2 are contractions and that the continuous time game is su-

permodular, hence having a unique equilibrium, equal to the �xed point of T 0
1 ◦ T 0

2 . For

simplicity, we will denote the equilibrium disputed region in the continuous time setting

simply as [θ∗, θ
∗]. By our preceding arguments, θ∆∗ → θ∗ and θ

∗∆ → θ∗ as ∆ → 0. Our next

result provides an explicit characterization of the equilibrium thresholds, expected payo�s,

and winning probabilities for both players in continuous time.

10To guarantee A2 in this setting for low values of ∆, we require µ(θ) to be weakly increasing and σ(θ)
to be constant. This is due to the nature of normal noise. If σ(θ1) > σ(θ0) for two states θ1 > θ0, then
the distribution of marginal changes starting from θ1 will not FOSD-dominate the other, as it will have too
many low draws. Similarly, if σ(θ1) < σ(θ0), the distribution of changes starting from θ1 will have too few
high draws. However, these restrictions can be relaxed by a change-of-variables argument: if µ(θ) and σ(θ)

are such that µ(θ)
σ(θ) −

σ′(θ)
2 is weakly increasing in θ, then, setting h(θ) =

� θ

0
1

σ(θ̃)
dθ̃, ηt = h(θt) has increasing

drift and constant variance, as required.
11Assumption B4 must be restated as requiring that M be large enough that player 1's payo� from

continuing the war starting at state M is negative, even when player 2 surrenders at all states θ ≤M2, and
analogously for player 2. Also, Assumption B6 becomes vacuously true in continuous time.
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Figure 1: Equilibrium utility and win prob.: Hi = 2, c1(θ) = 5 + θ, c2(θ) = 5− θ, σ2 = 1, M = 15
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(a) µ(θ) ≡ 0

0θ∗ θ∗ M
0
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H

θ

V1(θ)

V2(θ)

P1(θ)

P2(θ)

(b) µ(θ) ≡ 0.0625

Proposition 3. In the continuous time war of attrition, if players 1, 2 play threshold strate-

gies with thresholds θ > θ respectively, then each player's expected utility Vi(θ) and probability

of winning Pi(θ), conditional on an initial state θ, uniquely solve the following ODEs:

ci(θ) + γVi(θ) = µ(θ)V ′
i (θ) +

σ2

2
V ′′
i (θ) (1)

0 = µ(θ)P ′
i (θ) +

σ2

2
P ′′
i (θ) (2)

given the boundary conditions V1(θ) = H1, V1(θ) = 0; P1(θ) = 1, P1(θ) = 0; V2(θ) = 0,

V2(θ) = H2; P2(θ) = 0, P2(θ) = 1.

Moreover, the equilibrium thresholds (θ∗, θ
∗) uniquely satisfy the additional smooth-pasting

conditions V ′
1(θ) = 0, V ′

2(θ) = 0.

Equations 1 and 2 are obtained by combining the Hamilton-Jacobi-Bellman equation of

each player's optimization problem with Itô's Lemma. While they do not have closed-form

solutions in general, they simplify greatly if µ ≡ 0 and γ = 0, i.e., when θt follows a Brownian

motion with no drift and there is no discounting. In that case, Equations 1 and 2 reduce to:

V1(θ) =
2

σ2

� θ∗

θ

(λ− θ)c1(λ)dλ P1(θ) =
θ∗ − θ

θ∗ − θ∗
(3)

V2(θ) =
2

σ2

� θ

θ∗

(θ − λ)c2(λ)dλ P2(θ) =
θ − θ∗
θ∗0 − θ∗

, (4)

and the thresholds θ∗, θ
∗ are determined by the conditions V1(θ∗) = H1, V2(θ

∗) = H2.

Figure 1 illustrates the expected utility and winning probabilities of the two players as

12



Figure 2: Sample equilibrium path where player 2 wins
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a function of the initial value of θ when the stochastic process is symmetric (µ ≡ 0, Figure

1a) and when it is asymmetric (µ > 0, Figure 1b). In both examples, the cost functions are

taken to be symmetric around 0. As expected, the thresholds and utilities in Figure 1a are

symmetric around 0, and the winning probabilities Pi(θ) are linear in θ. On the other hand,

in Figure 1b, θ tends to drift up over time, favoring player 2, and both players' thresholds

are lower as a result. Figure 2 shows an example of an equilibrium path: as the state of the

world is initially in the disputed region, both players continue the war until θt reaches one

of the surrender thresholds, in this case player 1's.

The following Proposition shows that the comparative statics from Proposition 2 extend

to the continuous time model (parts i and ii) and can be strengthened (part iii).

Proposition 4.

(i) Increases in H1 and decreases in c1 raise θ∗, θ
∗ and θ∗ − θ∗. Increases in H2 and

decreases in c2 lower θ∗ and θ∗ but raise θ∗ − θ∗.

(ii) An increase in µ lowers θ∗ and θ∗.

(iii) If H1 and H2 are increased proportionally, and µ(θ) ≥ 0 for all θ, then θ∗ decreases.

Similarly, if µ(θ) ≤ 0 for all θ, then θ∗ increases. If µ(θ) ≡ 0, then θ∗ decreases and

θ∗ increases.

Substantively, part (iii) of Proposition 4 states that, if both players' incentives to �ght

increase in the same proportion, the disputed region expands not just in the sense of θ∗ − θ∗

growing�as stated in part (i)�but in the stronger sense that θ∗ decreases while θ
∗ increases.

The intuition is as follows. Suppose that, after increasing H1 and H2 proportionally, we are

13



left in equilibrium with a new disputed region of the form [θ∗, θ
∗ + ∆] for some ∆ > 0,

i.e., only player 1's threshold changes (the same argument applies if both thresholds move

strictly in the same direction). Then all the states added to the disputed region are states in

which player 2's costs are lower than player 1's, relative to the states in the original disputed

region. Hence, if player 1 is indi�erent at θ∗+∆, player 2 must be strictly willing to continue

the war at θ∗. The reason this result can only be proved in the continuous time setting is

that the proof relies on the continuity of θt as a function of time�which guarantees that, in

moving from one state to another, the path (θt)t passes through every state between them.

The intuition in the previous paragraph applies when the process has no drift (µ ≡ 0).

If we instead have µ ≥ 0, i.e., the drift in θt favors player 2, a proportional increase in

both players' prizes may either induce both thresholds to move away from each other, or it

may induce both thresholds to move to the left, but they cannot both move to the right.

The reason is that the player who faces a favorable drift has an intrinsic advantage that is

ampli�ed in longer wars. Thus, if prizes increase, the disputed region grows (part i), and

this strengthens the position of player 2.

Multi-Dimensional State

The baseline model limits the players' payo�s to reacting to changes in the state in opposite

ways. That is, θ is one-dimensional, and a high θ is good for player 2 and bad for player 1,

while a low θ is bad for player 2 and good for player 1. This special structure simpli�es the

analysis, but the results do not hinge fundamentally on this assumption. Indeed, the model

can be extended to make the state θt multi-dimensional, allowing the players' costs to vary

more richly: for example, in a price war between two �rms, θt can be two-dimensional, with

one dimension representing total demand and the other representing relative market share.

An analogue of Proposition 1 holds in this extended model. The details are contained in

Appendix C.

3 Discussion

Moving θ as Equilibrium Selection

The baseline model, with its time-varying state of the world θt, captures con�icts in which

the players' strengths and weaknesses change meaningfully over time. However, the model

can also be taken as a tool for equilibrium selection when the �true� model the researcher is

interested in is the classic war of attrition. The correct object of study for this purpose is

the limit of a sequence of equilibria as the movement of θ becomes arbitrarily slow.

14



In continuous time, this limit can be taken as follows. Denote µ̃(θ) = νµ(θ), σ̃(θ) =
√
νσ,

and denote the equilibrium thresholds as a function of ν by θ∗(ν), θ
∗(ν). We are interested

in the limit ν → 0. Of course, the limit game obtained when ν = 0 is the classic war of

attrition, but taking the limit of the equilibrium disputed region [θ∗(ν), θ
∗(ν)] as ν → 0

uniquely selects an equilibrium of the classic war of attrition, described next.

Proposition 5. Suppose H1 = H2 = H.12 There is θl such that θ∗(ν), θ
∗(ν) → θl as ν → 0.

If µ ≡ 0, then θl is given by the condition c1(θ
l) = c2(θ

l).

Here is an explanation of this result. As ν → 0, the disputed region must shrink, as

otherwise players would expect to wait a very long time before they can ever win the war,

if the current state is near their surrender threshold. And, if there is no drift, the disputed

region must contain the state of the world in which the players' cost functions intersect�else

the disputed region would be composed entirely of states that favor player 1 over player 2

or vice versa, and it would be impossible for both players' indi�erence conditions to be met.

Hence, as it shrinks, the disputed region converges to this point.

It follows that, if the initial state θ0 is below θl, then the selected outcome in the classic

war of attrition is that player 2 immediately surrenders. Similarly, if θ0 > θl, player 1

immediately surrenders.

A di�erent outcome arises when θ0 = θl, i.e., when the players have equal prize-cost

ratios. In this case, neither player surrenders immediately and both have equal chances of

winning. However, the selected equilibrium is not the totally mixed symmetric equilibrium

of the classic war of attrition. In fact, it is not even a Nash equilibrium of the classic war

of attrition; it is only a correlated equilibrium. We can see how this equilibrium would arise

if the classic war of attrition were augmented with payo�-irrelevant tokens. In the war of

attrition with tokens, players start with some number of tokens K > 0 and repeatedly play a

payo�-irrelevant game that selects a random winner in each round; the winner takes a token

from the loser in each round. The state θt tracks the amount of tokens held by player 2, and

the �rst player to run out of tokens surrenders.13

Alternative Models

This Section discusses the predictions of the model in comparison to those made by other

variants of the war of attrition found in the literature. We begin with the clasic war of

attrition.
12This normalization serves purely to simplify the notation.
13Note that this is not the most e�cient equilibrium in the war of attrition with tokens. A better equi-

librium is possible in which the players observe the �rst round of the game, and coordinate on having the
�loser� in this �rst round surrender.
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In continuous time, the classic war of attrition can be considered as a special case of our

model in which µ ≡ σ ≡ 0, i.e., θ is constant. Alternatively, we can take c1(θ) ≡ c1 and

c2(θ) ≡ c2 to be �at. For simplicity we will normalize H1 = H2 = H.

It is known (Hendricks et al., 1988) that this game has a continuum of subgame perfect

equilibria, which can be characterized as follows. In every equilibrium, at all times t > 0,

each player i surrenders at a rate
cj
H
. The equilibria di�er in what happens at t = 0. For each

p ∈ [0, 1] and each player i, there is an equilibrium in which i surrenders with probability p

at t = 0, while j does not surrender at t = 0.

In particular, there is an equilibrium in which player 1 surrenders immediately; another

in which player 2 surrenders immediately; and a mixed strategy equilibrium with no in-

stantaneous concession. In the latter, the expected payo�s of both players are 0, and i's

probability of winning is ci
ci+cj

.14 More generally, in every equilibrium, at least one player

has an expected payo� of 0.

The results in this paper di�er from the above in several ways. The model in this paper

has a unique equilibrium. Assuming an initial state in the disputed region, this equilibrium

gives both players a positive expected payo�, which is impossible in the classic model. As for

expected delay, the classic war of attrition admits equilibria with any expected delay between

zero and the maximum (i.e., enough to completely evaporate the value of the prize). The

model in this paper predicts an amount of delay strictly between these extremes.15

Additionally, the two models predict di�erent distributions for the length of the war. In

the classic model, the surrender rate must be constant, and there may be a probability of

immediate surrender. Hence the density h(t) of the length of the war is as shown in Figure

3a: exponentially decreasing over time, with a possible spike at t = 0. In contrast, in the

model presented in this paper, there is no immediate surrender. Moreover, in the discrete

time version, the length of the war is bounded away from zero: any time T at which the war

ends must satisfy T ≥ min(θ∗−θ0,θ0−θ∗)
η

> 0. In continuous time, this result disappears because

θt − θ0 has full support for all t > 0, owing to standard properties of the Brownian motion.

But it is still approximately true: as shown in Figure 3b, h(t) → 0 as t → 0, as it typically

takes some time for θ to hit either player's surrender threshold. Thus, the density of the

length of the war is hump-shaped over time. This di�erence may be used to distinguish

between the two models empirically.

Next we discuss the war of attrition with reputational concerns. The simplest version

(Abreu and Gul, 2000) is identical to the classic war of attrition, except that each player

14Note that, in this equilibrium, a player's probability of winning increases with her own cost. Holding cj
constant, in the limit as ci → ∞, player i wins almost surely.

15With symmetric prizes and costs, no drift and no discounting, and a slow-moving θ, each player's
expected payo� is H

4 > 0, so half of the joint surplus is destroyed in the war.
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Figure 3: Density of length of the war
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i has an exogenous probability ϵi of being a commitment type that never surrenders. The

game has a unique equilibrium, which is observationally equivalent to one of the equilibria of

the classic war of attrition described above, at least up to the point where only comitment

types are left. The innovation is that the probability of immediate surrender and the identity

of the player may surrender at time 0 are uniquely determined as a function of the ϵi. Much

of the comparison made above with the classic war of attrition thus extends to the Abreu

and Gul (2000) setting: indeed, in the model with commitment types, (the rational types

of) at least one player must have an expected payo� of 0, and the distribution of delay must

have decreasing density with a spike at t = 0, unlike in this paper.

In other variants of the reputational war of attrition (e.g., Fudenberg and Tirole (1986)),

each player has a continuum of possible types determining the player's �ow cost. If each

player has a positive probability of having negative cost�meaning she will never surrender�

the game has a unique equilibrium, featuring smooth screening of the types with positive

costs, possibly preceded by the immediate surrender of some types of one player. In such

a model, (most) types of each player have positive expected payo�s, but the distribution of

delay di�ers from that predicted by our model. Indeed, both players must have a positive

surrender rate at all times t > 0, as in the absence of surrender there is no screening and

hence no incentive for the weakest types remaining to continue.

Finally, we can compare our setting to Gul and Pesendorfer (2012)'s war of information.

Their baseline model is equivalent to a special (limiting)16 case of our continuous time model

16The cost functions violate Assumption B1, but our results go through as µθ is strictly increasing; see
footnote 9.
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with the following parameters: c1(θ) = k11θ>0, c2(θ) = k21θ<0, γ = 0, σ(θ) ≡ 1 and

µ(θ) = −1
2
+ 1

1+e−θ .
17 They then extend their results to allow for γ > 0, and separately for a

speci�c form of variable costs: c1(θ) = k1θ1θ>0, c2(θ) = −k2θ1θ<0 (with γ = 0). They provide

a result analogous to Proposition 1. While their arguments regarding supermodularity and

extremal equilibria in threshold strategies are analogous to the ones given here, their proof

that T1 ◦ T2 is a contraction, as required to show uniqueness, relies on explicitly calculating

the players' utilities from an arbitrary strategy pro�le, and from there deriving explicit

expressions for (T1 ◦ T2)′ which are shown by hand to be less than 1 in each case they

study. This approach does not generalize well to general cost and drift functions. Our

argument shows that (T1◦T2)′ is a contraction under much less restrictive conditions, and for

transparent reasons. They also consider a limit of their game as news become uninformative

(see their Proposition 2); their model, however, does not converge to the classic war of

attrition in this limit, as they retain the assumption of discontinuous cost functions (in

particular, only one player pays a �ow cost at each state). This distinguishes their results

from our Proposition 5.

4 Partial Concessions

In the baseline model, as in the classic war of attrition, the players only have two choices

at each moment: continue or surrender completely. In other words, they can control the

duration of the war, but not its intensity. To illustrate what is being ruled out, take the

example of a polluting �rm being boycotted by an activist group. In the baseline model,

the scope of the activists' demands, as well as the intensity of the boycott, measured by

the extent of �rm sales and consumer surplus lost, are all exogenous. The war ends when

the �rm capitulates to all the demands or the activists abandon the boycott; there is no

room for an intermediate solution. However, in practice the �rm may have access to a range

of policies it can implement to lower its own pollution. Thus, it may prefer to announce a

partial concession, in the form of a unilateral commitment to a certain level of self-regulation.

Such an announcement may succeed in de�ating the boycott's momentum even if it does not

fully meet the activists' demands.

This Section introduces an extension of the model that allows for partial concessions.

In other words, it allows for the players to surrender at both the intensive and extensive

margins. The resulting setting(s) can be taken as modeling bargaining processes under an

extreme lack of commitment, in which it is impossible for players to make quid pro quo

17This equivalence is obtained by setting θt = ln
(

pt

1−pt

)
, where pt is the probability that party 1 is better

given the information revealed at time t, as de�ned in their paper.
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bargains to resolve matters. The general insight that emerges is that unilateral concessions

can resolve con�ict, and can also be to the conceder's advantage, but only when the prize is

composed of heterogeneous parts that are unequally valued by the two players.

We will modify the baseline model in two ways, besides the introduction of partial con-

cessions. First, for simplicity, we will focus on the continuous time evolving war of attrition

with µ ≡ 0 and γ = 0, i.e., θt follows a Brownian motion with no drift and there is no

discounting. Second, we will assume that the dispute is over some issue or territory that can

be divided into pieces of di�erent value to each player. Namely, the prize is represented by

an interval [0, 1], where vi(x) is the value that i assigns to part x of the prize. We assume

that v1 is weakly decreasing in x, v2 is weakly increasing in x, and denote H1 =
� 1

0
v1(x)dx,

H2 =
� 1

0
v2(x)dx.

We consider two versions: one in which only player 1 can make concessions, and one in

which both players can do so.

One-Sided Concessions

The simplest possible case is one in which only one player�by assumption, player 1�has the

ability to make partial concessions, and she can only do so at the beginning of the war. That

is, at t = 0, player 1 can choose a threshold x∗ and unilaterally give up everything to the right

of x∗, so that player 2 collects a payo�
� 1

x∗
v2(x)dx immediately.18 The war then continues over

[0, x∗), that is, the baseline model is then played with H̃1 =
� x∗
0
v1(x)dx, H̃2 =

� x∗
0
v2(x)dx.

We denote the equilibrium disputed region in this continuation by [θ∗(x
∗), θ∗(x∗)].

A model with one-sided concessions represents settings in which player 2 either lacks

�ne control over her actions or cannot commit to stop �ghting over parts of the prize that

are still on the table. For an example of the �rst case, consider a boycott or protest: it

is natural to assume that the �rm or government can make credible concessions, as it can

make announcements, pass laws, and so on, yet the protesters may be unable to make precise

changes to their demands due to a lack of centralized leadership. For an example of lack of

commitment, consider a city besieged by an attacking army. The city can gather some of

its wealth and throw it over the walls, giving it to the army as tribute. The army, however,

cannot commit to leaving in exchange for tribute; it can always choose to renege on such a

promise and continue the siege. Thus tribute induces the army to leave only if it diminishes

the city's wealth enough that continuing the siege is no longer incentive-compatible ex post.

Importantly, the army also cannot refuse or return the tribute.19

18It is always worse for player 1 to concede a set not of the form [x∗, 1].
19The results are similar if the city is allowed to instead destroy part of the prize, though with di�erent

welfare implications.
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The following Proposition provides a characterization of optimal concessions in this case.

Proposition 6. In any equilibrium, player 1 chooses a value of x∗ that solves:

maxx∈[0,1]θ
∗(x) subject to θ∗(x) ≤ θ0.

If this maximization problem has a unique solution, the equilibrium is essentially unique.

In other words, player 1 makes the concession that makes her most aggressive in the

continuation, by maximizing her own surrender threshold θ∗(x)�subject to the caveat that

it is never useful to strictly induce player 2 to surrender immediately. To see why, note

that, if player 1's concession does not induce immediate surrender by her opponent (that is,

θ0 ∈ (θ∗(x
∗), θ∗(x∗))), then her value function over (θ0, θ

∗(x∗)) can be calculated by solving

(1) leftwards from θ∗(x∗), with the initial conditions given by smooth-pasting. As the solution

is increasing in the starting point θ∗(x∗), player 1 need only make θ∗(x∗) as high as possible.

It can be shown that player 1 does no better if she can make multiple concessions over

time instead of a one-shot concession at the beginning. (See Proposition 7 in Appendix A

for details.) Intuitively, the timing of concessions makes no di�erence because there is no

discounting, and the optimal concession is largely independent of the current state, so there

is little temptation to adjust it as the war progresses.

We can provide a graphical description of the optimal concession x∗ as follows. For each

possible value of θ∗ ∈ [−M,M ], consider all pairs (H1, H2) that make 1's surrender threshold

equal to θ∗. In this way, partition the space of possible prize pairs (H1, H2) into level curves,

parameterized thus: H2(H1; θ
∗). The concession technology yields a feasible path of prize

pairs (H1(x), H2(x)) = (
� x
0
v1(x̃)dx̃,

� x
0
v2(x̃)dx̃). Player 1 then picks the prize pair on the

highest possible level curve, as illustrated in Figure 4.

H1

H2 θ∗1 θ∗2 θ∗3

H2(H1; θ
∗
3)

(H1(1), H2(1))

(H1(x
∗), H2(x

∗))

Figure 4: Level curves, feasible prize pairs, and optimal concession x∗
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Remark 1. H2 is a convex function of H1 along all level curves, as well as along the feasible

path of prize pairs.

The convexity of the prize path is due to the shape of the functions vi, while the convexity

of the level curves follows from Proposition 4.(iii). If x∗ is interior (i.e., x∗ < 1 and it does

not induce immediate surrender), then the path of prize pairs must be tangent to the level

curve passing through x∗, so the slopes must be equal. From (3)-(4), and since the slope of

the path of prize pairs is v2(x)
v1(x)

, we have

c2(θ∗(x
∗))� θ∗(x∗)

θ∗(x∗)
c1(λ)dλ

=
v2(x

∗)

v1(x∗)
. (5)

A derivation is given in the proof of Remark 1.

Our analysis yields sharp predictions in two special cases. First, suppose that the prize is

homogeneously valued by both players, that is, v1(x) and v2(x) are constant in x. Then the

path of feasible prize pairs is simply a line segment from (0, 0) to (H1, H2), and the highest

level curve is attained at x∗ = 1, i.e., by making no concession. The same result holds if

the vi are approximately constant. In other words, player 1 can only bene�t from making

concessions when the valuations of the conceded prize are lopsided enough that the gain

from undermining player 2's incentives to �ght over the remainder dominates the direct loss

from foregoing part of the prize. Second, suppose that v1(x) ≡ v1 > 0 is constant, while

v2(x) ≡ 0 for x ≤ x and v2(x) ≡ v2 > 0 for x > x. In other words, part of the prize is

homogeneous, and part is valued only by player 1.20 In this case the relevant part of the

feasible path of prize pairs is a line segment from (xv1, 0) to (H1, H2). Since an interior

optimum is impossible, the optimal concession is either no concession at all or the minimal

concession that induces immediate surrender. However, in the general case, the optimal

concession may be positive while not immediately ending the war.

It is worth comparing these results to those of a standard bargaining setting. For instance,

if player 1 gets to make a single take-it-or-leave-it o�er, she would o�er [x̂, 1], where x̂ is

chosen to leave player 2 indi�erent about accepting, i.e.,
� 1

x̂
v2(x)dx = V2(θ0), and the war

would end immediately. (If there are alternating o�ers, a lower x̂ would be chosen that

splits the bargaining surplus more equally.) In contrast, the equilibrium concession x∗ in

our model does not necessarily end the war; it may be higher or lower than x̂; and it may

even leave player 2 worse o� than she is either in the bargaining setting or when concessions

are impossible. The reason is that unilateral concessions di�er from bargaining o�ers in two

ways. First, player 2 can always continue to �ght after a concession, so player 1 may need

20For instance, if player 1 is a city under siege, both players may value the city's wealth, but only the city
values the lives of its citizens.
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to make a larger o�er to deplete player 2's incentives to �ght�or, if the e�ect on player 2's

incentives is not strong enough, she may concede nothing at all. Second, player 2 cannot

veto a �stingy� concession (x∗ > x̂); rather than refusing the o�er, her only recourse is to

continue �ghting. To see how this may bene�t player 1, suppose for instance that θt is slow-

moving, as in Proposition 5, and θ0 is only slightly higher than θl. Then player 1 would lose

immediately in the absence of a concession, and so would have to give up the entire prize in

bargaining; but, if the vi are not �at, she can make herself the stronger player with a very

small concession, after which player 2 will be the one forced to surrender.

Two-Sided Concessions

Finally, we brie�y discuss the case in which both players are able to make concessions, and

can do so at any time. (As we will see, in this case, timing will matter.) To simplify the

analysis, we assume that the prize is only �nitely divisible, that is, there is a �nite sequence

0 = x0 < x1 < . . . < xk = 1 such that each interval [xl, xl+1) cannot be split. Thus, at any

given time, the part of the prize still in dispute must be of the form [xl, xj) (l < j), if player

1 has conceded [xj, 1] and player 2 has conceded [0, xl). To ensure that it is never optimal

to concede non-consecutive intervals, we will assume that v11 > . . . > vk1 and v12 < . . . < vk2 ,

where vli =
� xl
xl−1

vi(x)dx.

The relevant state of the game is now of the form (θ, xl, xj). For simplicity, we will focus

on threshold strategies. A threshold strategy for player 1 is given by a collection of thresholds

θ∗(xl, xj) for each l < j such that, if the prize still in dispute is [xl, xj), then player 1 concedes

the next part of the prize�thus changing the state to (θ, xl, xj−1)�as soon as θt ≥ θ∗(xl, xj).

The de�nition for player 2 is analogous.21 Denote by θ̃∗(xl, xj), θ̃
∗(xl, xj) the equilibrium

surrender thresholds if the prize in dispute is [xl, xj) and no (further) partial concessions are

allowed. (These �naive� thresholds are unique and pinned down by our analysis in Section

2.)

An equilibrium in threshold strategies can be constructed as follows. When only one

part of the prize is in dispute (i.e., j − l = 1), the game is equivalent to the baseline

model, for which the solution is known. When two parts are in dispute (j − l = 2), the

players are still e�ectively facing a war of attrition, but with more complicated payo�s after

(partial) victory or surrender: at the moment when player 1 makes a concession in state θ,

the players' continuation payo�s are (V1(θ, xl, xj−1), V2(θ, xl, xj−1) + vj2) rather than (0, H2),

21We restrict the players to conceding one part of the prize at a time for simplicity. It makes little di�erence,
as multiple concessions can be made at once�in particular if θ∗(xl, xj−1) ≤ θ∗(xl, xj) or θ∗(xl, xj−1) ≥
θ∗(xl, xj). Also, we assume that if both players try to concede at the same time, each one succeeds (�rst)
with probability 0.5. Again, this makes little di�erence.
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and analogously for player 2. Finding equilibrium thresholds for this game pins down value

functions Vi(θ, xl, xj) for j − l = 2. We can then consider states with j − l = 3, and so on.22

Giving a general and explicit equilibrium characterization is di�cult. A major reason is

that, with two-sided concessions, the equilibrium concession(s) are no longer predetermined

as a function of the fundamentals, as in Proposition 6; instead, they may depend on the

entire realized path of θt.

We show this in the special case k = 2, i.e., when the prize is made up of only two

pieces. To simplify notation, denote the disputed region in the model without conces-

sions by [θ̃∗(0, 1), θ̃
∗(0, 1)] = [θ

˜
, θ̃]; the disputed region after a concesion by player 1 by

[θ̃∗(0, x1), θ̃
∗(0, x1)] = [θ1, θ

1]; the disputed region after a concession by player 2 by [θ̃∗(x1, 1), θ̃
∗(x1, 1) =

[θ2, θ
2]; and the equilibrium concession thresholds by θ∗(0, 1) = θ∗, θ

∗(0, 1) = θ∗. Assume

parameters such that θ1 > θ0 and θ2 < θ0, i.e., making a concession would be wortwhile for

either player in the one-sided version of the game (Proposition 6).

Figure 5: Concessions under highly heterogeneous valuations

0−M θ2 θ
˜ θ2 θ1 θ̃ θ1 M

0

v21 = v12

v11 = v22

H

disputed region with no concessions

disputed region after 2 concedes

disputed region after 1 concedes

region where 2 concedes
region where 1 concedes

Suppose �rst that θ2 ≤ θ1. (Intuitively, this condition holds with the players' valuations

of the two parts of the prize are di�erent enough.) Then, for θt ∈ [θ2, θ1], the game ends

immediately, with player 1 getting [0, x1) and 2 getting [x1, 1]. Indeed, this is the outcome

if either player makes a partial concession, and it must generate higher payo�s than �ghting

22It can be shown at each step that (a) best response to a threshold strategy is another threshold strategy;
the mapping giving the optimal threshold(s) for each player as a function of the opponent's concession
threshold is a upper-hemicontinuous and convex-valued correspondence; and the composition of the two
must cross the identity, so an equilibrium in threshold strategies exists.
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for at least one player. Then, when θt ∈ (θ1, θ
1), the players e�ectively �ght over player 1's

�turf�, [0, x1), with [x1, 1] guaranteed to go to player 2; conversely, when θt ∈ (θ2, θ
2), the

players �ght only over player 2's turf, [x1, 1]. The game thus devolves into one of two possible

wars over individual pieces of the prize. Figure 5 illustrates an example with c1(θ) = 5+ 10
3
θ

c2(θ) = 5 − 10
3
θ, σ2 = 2, vii = 7, vji = 3.5 and Hi = 10.5. The red curve is player 1's

continuation value after a concession, V1(θ, 0, x1), and the blue curve is her continuation

value if player 2 concedes to her, V1(θ, x1, 1) + v21.

Figure 6: Concessions under moderately heterogeneous valuations
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θ∗ θ1 θ2 θ∗ θ̃ θ1 M
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The more interesting case is when θ2 > θ1, i.e., valuations are only moderately hetero-

geneous, as illustrated in Figure 6 under the parameter values vii = 12.5, vji = 7, Hi = 19.5

and the same cost functions as in the previous �gure.23 In equilibrium, player 1 makes a

concession when θt �rst goes above a threshold value θ∗, while player 2 makes a concession

if θt goes below θ∗.

Since θ∗ lies in the interior of [θ1, θ
1], a concession by 1 at θ∗ does not lead to surrender

by either player, and likewise for player 2. As a result, the outcome of the war depends on

the entire path followed by the state. For instance, suppose θ0 = 0. Then, if θt �rst goes

below θ2 before ever turning positive, player 2 gives up everything��rst with a concession

at θt = θ∗ and then with surrender at θ2. However, if θt �rst goes up beyond θ∗ (but below

θ1) and then down towards θ2, player 1 concedes [x1, 1] when the state crosses θ∗, and then

23Of course, if valuations are too homogeneous, then concessions are weak by Proposition 4.(iii). It is not
hard to show that there is a nonempty range of prize valuations with intermediate heterogeneity for which
concessions are not weak but the intervals (θ2, θ

2), (θ1, θ
1) overlap.
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player 2 ends the war by giving up [0, x1] when θt goes below θ1.

The threshold θ∗ is chosen to make player 1 indi�erent about conceding for all θ ≥ θ1;

similarly, θ∗ leaves 2 indi�erent about conceding for θ ≤ θ2. Other threshold equilibria are

not possible. Indeed, we can show that, were player 2's concession threshold any lower,

player 1 would strictly prefer to concede at all θ ≥ θ1 (i.e., θ∗ ≤ θ1), whence a marginal

concession by 1 would lead to surrender by 2; thus, between θ∗ and θ
∗, the players would be

e�ectively �ghting over [x1, 1], as [0, x1) is guaranteed to go to player 1. But then we ought

to have [θ∗, θ
∗] = [θ2, θ

2], contradicting θ∗ ≤ θ1. Similarly, if θ∗ were any higher, player 1

would not concede for any θ ≤ θ1, whence player 2 would concede for all θ ≤ θ2, leading to

the same contradiction.

5 Conclusions

We have shown that the addition of an evolving state of the world to the classic war of

attrition yields several attractive properties absent from the unperturbed game: the equi-

librium is unique and the comparative statics are well behaved. In particular, if a player's

prize increases or her cost decreases, she is more likely to win, and the war will end sooner

if she held an advantage to begin with, whereas it will lengthen if she was an underdog at

�rst. The model can be augmented to allow for partial concessions. The logic that arises is

that concessions can bene�t the conceder when they disproportionately sap the opponent's

incentive to �ght.

Relative to models with reputational concerns, the evolving war of attrition makes pre-

dictions that are less sensitive to small perturbations to the parameters (in particular, the

players' reputations). The two frameworks diverge further when concessions are allowed:

since our model has complete information, the players need not worry that concessions will

signal weakness, as they might in a reputational model.

The logic of unilateral concessions is also distinct from that of o�ers in a bargaining

framework: concessions cannot be rejected, but they also cannot be made in exchange for

a matching concession from the opponent. As a result, it is harder to end a war when

only unilateral concessions are available, and the conceder may do better or worse than in a

bargaining setting.

Other applications are possible. For instance, the game can be extended to include

costly commitment devices, i.e., �bridge-burning�; to wars of attrition involving more than

two players, as in legislative stando�s; or to cases where players have some control over the

�ow costs (e.g., �rms may engage in a price war with limited scope, or countries may ban

certain types of weapons to limit the costs of war). Such actions are commonplace, and have
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been discussed by game theorists since at least Schelling (1960), but not given a systematic

treatment within the war of attrition framework.
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A Proofs

De�nition 1. A (non-terminal) history at time t, ht, is a sequence of states of the world

(θ)t = (θ0, . . . , θt), and the sequence of actions (ais)i,s given by ais = 1 for i = 1, 2 and

s = 0, . . . , t.

We will say histories to refer to non-terminal histories for brevity, and write ht = (θ)t

as shorthand for ht = ((θ)t, (1, . . . , 1), (1, . . . , 1)). We will denote by H the set of all (non-

terminal) histories and by Ht the set of all (non-terminal) histories at time t.

De�nition 2. A strategy for player i, denoted by ψi, is a collection of probabilities ψi(h) ∈
[0, 1] for each history h, denoting the probability that player i continues at history h.

We will assume that players can only choose measurable strategies. Formally, ψi : H →
[0, 1] is a measurable strategy for player i if, for all t, ψi|Ht is a measurable function from

(Ht,Ft) to ([0, 1],B([0, 1])), where Ft is the σ-algebra generated by the random vector ht :

Ω → [−M,M ]t and B([0, 1]) is the Borel σ-algebra on [0, 1].

De�nition 3. A strategy ψi(h) for player i is Markov if ψi(h) = ψi(h
′) for all h = (θ)t,

h′ = (θ)t
′
such that θt(h) = θt′(h

′).

A strategy ψ1 for player 1 (2) is a threshold strategy with threshold θ∗ if ψ1(ht) = 1

whenever θt(ht) < θ∗ (>) and ψ1(ht) = 0 whenever θt(ht) > θ∗ (<).

Lemma 1. In any SPE, player 1 never surrenders at time t if θt < −M1, and player 2 never

surrenders at time t if θt > M2.

Proof. For player 1, surrendering when θt < −M1 yields a continuation payo� of 0, while

continuing until the �rst time s > t when θt ≥ −M1 yields a strictly positive payo�. The

proof for player 2 is identical.

De�nition 4. For any history h and strategies ψi, ψj, let Ui(ψi, ψj|h) be i's continuation
utility from strategy pro�le (ψi, ψj) at history h.

De�nition 5. For any history h0, any strategy ψi for player i, and any α ∈ [0, 1], let ψh0,αi

be a strategy for player i given by ψh0,αi (h) = α if h = h0 and ψ
h0,α
i (h) = ψi(h) otherwise.

De�nition 6. Given two strategies ψi(h), ψi(h
′) for player i, we say ψi ≥ ψ′

i i� ψi(h) ≥ ψ′
i(h)

for all histories h.

De�nition 7. Given a strategy ψj for player j and a history h, denote by Vi(ψj|h) the

highest continuation utility player i can attain conditional on the history being h and player

j using strategy ψj, i.e.,

Vi(ψj|h) = sup
ψi

Ui(ψi, ψj|h).
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De�nition 8. Given a strategy ψj for player j and a history h, denote by Ṽi(ψj|h) the

highest continuation utility player i can attain conditional on the history being h and player

j using strategy ψj, if player i is restricted to not surrendering in the current period, i.e.,

Ṽi(ψj|h) = −ci(θ(h)) + δE(Vi(ψj|h′)|h)

Lemma 2. Let ψj ≥ ψ′
j be two strategies for player j, let ψi be a strategy for player i and

let h be any history. Then

Ui(ψi, ψj|h) ≤ Ui(ψi, ψ
′
j|h).

Proof. Let h be a history for time t0. Then Ui(ψi, ψj|h)−Ui(ψi, ψ′
j|h) =

∑∞
t=t0

δt−t0Et, where

Et equals

�
Q(ψi, ψ

′
j, (θ)

t)(ψj((θ)
t)− ψ′

j((θ)
t))ψi((θ

t))
(
Ui

(
ψ

(θ)t,1
i , ψ

(θ)t,1
j |(θ)t

)
−H1

)
dP ((θ)t|(θ)t0) ≤ 0

Here Q(ψi, ψ
′
j, (θ)

t) is the probability that the war continues up to time t conditional on the

path of the state of the world being (θ)t and the players using strategies ψi, ψ
′
j respectively.

The last inequality follows from the fact that Ui

(
ψ

(θ)t,1
i , ψ

(θ)t,1
j |(θ)t

)
−H1 < 0 by Assumption

B5.

Corollary 1. Let ψj ≥ ψ′
j be two strategies for player j and let h be any history. Then

Vi(ψj|h) ≤ Vi(ψ
′
j|h).

De�nition 9. We say a strategy ψi for player i is a subgame-perfect response to a strategy

ψj for player j if it is a best response in every subgame.

Lemma 3. Any subgame-perfect response ψi to ψj must satisfy: ψi(h) = 1 if Ṽi(ψj|h) > 0

and ψi(h) = 0 if Ṽi(ψj|h) < 0.

Proof. If Ṽi(ψj|h) > 0, then Vi(ψj, h) = Ṽi(ψj|h) > 0 and there are strategies ψi for which

Ui(ψi, ψj|h) is arbitrarily close to Vi(ψj, h), hence positive. Then any ψi which is a subgame-

perfect response to ψj must attain positive utility starting at history h. This implies ψi(h) >

0 and −ci(θ(h)) + δE(Ui(ψi, ψj|h′)|h) > 0, whence ψi(h) = 1 is optimal.

If Ṽi(ψj|h) < 0, then Vi(ψj, h) = 0 and any strategy ψi with ψi(h) > 0 would attain

negative utility starting at history h. Hence ψi(h) = 0.

Lemma 4. Let ψj, ψ
′
j be two strategies for player j such that ψj ≥ ψ′

j. Let ψi ∈ BRi(ψj).

Then there is ψ′
i ∈ BRi(ψ

′
j) such that ψ′

i ≥ ψi.
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Proof. From Corollary 1 and the de�nition of Ṽi(ψj|h), it follows that Ṽi(ψj|h) ≤ Ṽi(ψ
′
j|h)

for all histories h.

Let A+, A0 and A− be the set of histories h for which Ṽi(ψj|h) > 0, Ṽi(ψj|h) = 0 and

Ṽi(ψj|h) < 0 respectively, and de�ne A′
+, A

′
0 and A′

− analogously for ψ′
j. Then A+ ⊆ A′

+

and A+ ∪ A0 ⊆ A′
+ ∪ A′

0.

De�ne ψ′
i as follows: ψ

′
i(h) = 1 if h ∈ A′

+ ∪ A′
0 and ψ′

i(h) = 0 otherwise. Then ψ′
i ≥ ψi

by construction, and ψ′
i is a best response to ψ′

j by Lemma 3.

Lemma 5. There are M > −M + η and M < M − η such that, in any SPE, player 1

surrenders if θ > M and 2 surrenders if θ < M .

Proof. Assume that θt ≥M − η, and that player 2 plays a threshold strategy with threshold

M2. As usual, player 1 can guarantee a payo� of 0 by surrendering.

Suppose that player 1 does not surrender immediately. There are two possibilities. Either

player 2 surrenders at some time t′ ≥ t, or player 1 surrenders at some time t′ > t. In the

�rst case, it must be that θt′ ≤M2. Player 1's utility is

δt
′−tH1 −

s=t′−1∑

s=t

δs−tc1(θs).

Recall that, by Assumption A3, |θs+1−θs| ≤ η for all s. ThenM−η−M2 ≤ |θt′−θt| ≤ (t′−t)η.
Then

t′−1∑

s=t

c1(θs) ≥ (t′ − t)c1(M2) ≥ c1(M2)
M −M2 − η

η
> H1,

where the last inequality uses Assumption B4. Hence

δt
′−tH1 <

t′−1∑

s=t

δt
′−tc1(θs) ≤

t′−1∑

s=t

δs−tc1(θs).

Hence player 1's continuation utility is negative in this case. In the second case where player

1 surrenders, if the state never makes it below −M1 before she surrenders, her utility is also

negative. If the state makes it below −M1, by B5, her payo� is no better than if would be

if player 2 surrendered as soon as θ reached −M1, and this payo� is negative by the same

argument as in the �rst case.

Thus, player 1 would strictly prefer to surrender if θt ≥ M − η. By continuity, player 1

would also strictly prefer to surrender for all θ < M − η close enough to M − η. By Lemma

2, player 1 would also prefer to surrender if player 2 used any other strategy that does not

violate Lemma 1.
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The argument for player 2 is analogous.

Lemma 6. Let θ∗ ∈ [−M,M2]. If player 2 uses a threshold strategy with threshold θ∗, player

1 has an essentially unique subgame-perfect response, which is also a threshold strategy.

Analogously, let θ∗ ∈ [−M1,M ]. If player 1 uses a threshold strategy with threshold

θ∗, player 2 has an essentially unique subgame-perfect response, which is also a threshold

strategy.

Proof. We will prove the �rst statement; the second one is analogous. Suppose that player 2

uses a threshold strategy with threshold θ∗ ∈ [−M,M2]. We will denote this strategy by ψθ∗2 .

Let V1(θ) be the highest continuation utility player 1 can attain conditional on the current

state being θ and player 2 using strategy ψθ∗2 , i.e.,

V1(θ) = sup
ψ1

U1(ψ1, ψ
θ∗
2 |θ)

Note that V1 only depends on the current state and not on the history of states of the world,

since player 2 is not conditioning on the history.

Next, we prove several properties of V1(θ) by a recursive argument.

Claim 1. V1(θ) is weakly decreasing in θ.

Proof. Let V10(θ) be given by V10(θ) = H1 if θ ≤ θ∗ and V10(θ) = 0 otherwise. Let L denote

the set of Lebesgue-measurable functions from [−M,M ] to [0, H1]. De�ne the operator

W : L → L by

W (g)(θ) =





H1 if θ ≤ θ∗

max (−c1(θ) + δE(g(θ′)|θ), 0) if θ ∈ (θ∗,M − η)

0 if θ ∈ [M − η,M ]

(6)

where θ′ − θ|θ ∼ Fθ. For each k ∈ N, de�ne V1k = W (V1(k−1)).

Note that, for all g in the domain of W , W (g) is always in the codomain of W by

Assumption B5.

We will now make several observations about W . First, V1 is a �xed point of W . Indeed,

for θ ∈ (θ∗,M − η), the statement that W (V1)(θ) = V1(θ) is just the Bellman equation for

V1. For θ ≤ θ∗, W (V1)(θ) = V1(θ) = H1 by construction. For θ ≥ M − η, W (V1)(θ) =

V1(θ) = 0 by Lemma 5. Of course, note that V1 ∈ L because V1(θ) ∈ [0, H1] for all θ

by Assumption B5, and V1 is Lebesgue-measurable since, in fact, it must be continuous on

(θ∗,M ] by Assumptions A1 and B2.
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Second, W has at most one �xed point by the contraction mapping theorem. Indeed, W

is Lipschitz with constant δ < 1 if we endow the space R[−M,M ] with the norm || · ||∞.
Third, W is weakly increasing (i.e., if g ≥ h everywhere, W (g) ≥ W (h) everywhere).

Fourth, note that V11 ≥ V10 by construction. Then V1(k+1) ≥ V1k for all k. Hence, for

each θ, the sequence (V1k(θ))k is weakly increasing in k. Since it is also bounded, it con-

verges pointwise, and the pointwise limit is a �xed point of W by the monotone convergence

theorem. Then, by our previous arguments, V1k converges pointwise to V1.

Fifth, W preserves decreasing-ness: if g is weakly decreasing in θ, so is W (g). For

θ ∈ [θ∗,M − η], this follows from Assumptions A2, B1 and B5. For other values of θ, it is

obvious. Then, since V10 is weakly decreasing in θ, V1k is weakly decreasing in θ for all k,

and so is V1.

Denote Ṽ1(θ) = −c1(θ) + δE(V1(θ
′)|θ).

Claim 2. Ṽ1(θ) is strictly decreasing in θ.

Proof. This follows from the facts that V1(θ
′) is weakly decreasing in θ′ (Claim 1); θ′ is

FOSD-increasing in θ by Assumption A2; and c1(θ) is strictly increasing in θ by Assumption

B1.

Claim 3. Ṽ1(θ) and V1(θ) are continuous for θ ∈ (θ∗,M ].

Proof. Ṽ1(θ) is continuous in θ for the following reasons: c1(θ) is continuous by Assumption

B2; V1 is bounded, as V1(θ) ∈ [0, H1] for all θ; and fθ is continuous in θ by Assumption A1.

Recall that, for θ ∈ (θ∗,M ], V1(θ) = max(Ṽ1(θ), 0). Then, since Ṽ1 is continuous in θ and

the function max(·, 0) is continuous, V1(θ) is continuous in θ for all θ ∈ (θ∗,M ].

Now note that, by Lemma 5, Ṽ1(θ) < 0 for θ = M − η, and Ṽ1(θ) is continuous and

strictly decreasing in θ by Claims 2 and 3. Then there are two possibilities. Either there is

a unique θ∗ > θ∗ for which Ṽ1(θ
∗) = 0 or Ṽ1(θ) < 0 for all θ > θ∗.

By Lemma 3, in the �rst case, ψθ
∗

1 is the essentially unique subgame-perfect response to

ψθ∗2 .24 In the second case, the unique best response for player 1 is a threshold strategy with

threshold θ∗, such that ψ1(θ∗) = 1.

Proof of Proposition 1. First, we prove that there is an essentially unique equilibrium in

threshold strategies. By Lemma 6, if one player is using a threshold strategy, the other player

must also be using a threshold strategy, and the latter threshold is uniquely determined as

a function of the former. De�ne then two functions T1, T2 : [−M,M ] → [−M,M ] as follows:

if player i uses threshold θi, then player j's optimal threshold as found in Lemma 6 is Tj(θi).

24It is not unique in the sense that any value ψ1(θ
∗) ∈ [0, 1] is optimal.
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An equilibrium in threshold strategies is then given by a threshold θ∗ for player 1 such that

T1(T2(θ
∗)) = θ∗.

We will now show that T1 is weakly increasing. Let V θ̃
1 (θ) and V θ̃

1k(θ) for all k be as

de�ned in Lemma 6, conditional on player 2 using threshold θ̃. Note that, given any two

values θ̃ > θ̃′, V θ̃
10 ≥ V θ̃′

10 . Moreover, W θ̃(g) ≥ W θ̃′(f) for any function g, and both operators

are weakly increasing. Hence V θ̃
1k ≥ V θ̃′

1k for all k, so V θ̃
1 ≥ V θ̃′

1 and T1(θ̃) ≥ T1(θ̃
′), i.e., T1 is

weakly increasing.

Next, we argue that, for any x > y such that T1(y) > y, T1(x)− T1(y) < x− y. In broad

strokes, we will make the following argument. By construction, player 1 is indi�erent about

continuing when the current state is T1(y) and player 2 uses threshold y. Suppose now that

player 2 switches to using a higher threshold x > y, and player 1's optimal response requires

her to increase her own threshold exactly as much as player 2 did, i.e., to z = T1(y) + x− y.

Then, under the new strategy pro�le, player 1's utility in state z is lower than her utility in

state T1(y) under the old strategy pro�le, for two reasons: her �ow costs are higher, and the

Markov process governing the state is more likely to drift to the right. The same problem

arises if z − T1(y) > x − y. Hence player 1's optimal response must involve moving her

threshold up by less than x− y.

Formally, let t∆ be the function t∆(θ) = θ − ∆. Take ∆ = θ̃ − θ̃′. For any function V ,

denote V = V ◦ t∆. For any operator W , de�ne W by W (g) = W (g ◦ t−1
∆ ) ◦ t∆.

By construction, V
θ̃′

1k = W
θ̃′

(V
θ̃′

1(k−1)) for all k, and V
θ̃′

10 = V θ̃
10.

The crucial observation now is that, for any weakly decreasing function g, W
θ̃′

(g) ≥
W θ̃(g). Indeed,

W
θ̃′

(g)(θ) =




H1 if θ −∆ ≤ θ̃′ ⇔ θ ≤ θ̃

max (−c1(θ −∆) + δE(g(θt+1 +∆)|θt = θ −∆), 0) if θ > θ̃

Note that −c1(θ−∆) > −c1(θ) by Assumption B1, and θt+1 +∆ = (θ−∆)+X +∆ where

X has distribution function Fθ−∆, which is weakly FOSD'd by Fθ by Assumption A2.

It follows that V
θ̃′

1k ≥ V θ̃
1k for all k, and hence V

θ̃′

1 ≥ V θ̃
1 .

Finally, from Lemma 6, we know that −c1(θ) + δE(V θ̃
1 (θ

′)|θ) = 0 for θ = T1(θ̃). The

above argument implies that −c1(θ −∆) + δE(f(θt+1 +∆)|θt = θ −∆) > 0 for the same θ,

whence T1(θ̃
′) + ∆ > T1(θ̃). This �nishes the argument. On the other hand, if x > y and

T1(y) = y, a similar argument implies T1(x) = x, so T1(x)− T1(y) = x− y.

The analogous results are true of T2. In addition, it is not possible that T2(x) = T1(x) = x

for any x. Indeed, if this were the case, by Lemma 6, there would be an equilibrium with

thresholds θ∗ = θ∗ = x, in which both players have Ṽi(x) ≤ 0. But in this case Ṽ1(x) =
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−c1(x) + δpH1 and Ṽ2(x) = −c2(x) + δ(1 − p)H2, where p is the probability that θt+1 > x

tomorrow, so it would be implied that 0 ≥ Ṽ1(x)+ Ṽ2(x) = −c1(x)− c2(x)+pH1+(1−p)H2,

which contradicts Assumption B6.

Taken all together, these arguments imply that T1◦T2 has at most one �xed point. Indeed,

if θ∗ ̸= θ∗
′
are both �xed points of T1 ◦ T2, we would have that |T1(T2(θ∗)) − T1(T2(θ

∗′))| ≤
|T2(θ∗)− T2(θ

∗′)| ≤ |θ∗ − θ∗
′ | with at least one strict inequality, a contradiction.

Next, we show that T1 ◦ T2 has a �xed point as follows. Take θ
∗
0 = M and θ

∗
n =

T1(T2(θ
∗
n−1)) for all n ≥ 1. Clearly θ

∗
0 ≥ θ

∗
1. Since T1 ◦T2 is weakly increasing, it follows that

θ
∗
1 ≥ θ

∗
2 ≥ . . .. Since the sequence is bounded it must converge to a limit θ

∗
. As we have

shown that T1 ◦ T2 is Lipschitz, and hence continuous, it follows that θ
∗
is a �xed point of

T1 ◦ T2.
Finally we rule out other equilibria that are not in threshold strategies. We use a standard

argument from supermodular games similar to Milgrom and Roberts (1990). Following the

notation of the previous paragraph, denote θ∗n = T2(θ
∗
n) for all n and θ∗ = T2(θ

∗
). Also, let

θ∗0 = −M , θ∗n = T2(T1(θ∗(n−1))), θ
∗
n = T1(θ∗n) and denote the limits by θ∗, θ

∗ respectively.

Since T1, T2 are weakly increasing, we have

θ
∗
0 ≥ . . . ≥ θ

∗ ≥ θ∗ ≥ . . . ≥ θ∗0

θ∗0 ≥ . . . ≥ θ∗ ≥ θ∗ ≥ . . . ≥ θ∗0

By Lemma 4, whenever i plays a strategy higher than ψi, any best response by j must be

weakly lower than j's best response to ψi. Hence, any strategy played by 1 must be bounded

between ψ
θ∗0
1 and ψ

θ
∗
0

1 ; any strategy played by 2 must be bounded between ψθ∗02 and ψ
θ∗0
2 ; and

so on.

By induction, any strategy used by 1 must be between ψθ
∗

1 and ψθ
∗

1 . But since θ∗ =

θ
∗
= θ∗, there is a (essentially) unique equilibrium strategy for player 1. The same argument

applies to player 2.

Proof of Proposition 2. For (i), take two cost functions c1, ĉ1 for player 1 such that ĉ1(θ) <

c1(θ) for all θ. (The cases where H1 increases or c2 or H2 change are analogous.) Assume that

player 2 is playing a threshold strategy with threshold θ∗. Using the notation developed in

Proposition 1, let V1(θ) and V̂1(θ) be the value functions for player 1 when her cost function

is c1(θ) and ĉ1(θ), respectively. We will similarly refer to the analogues of W , T1 under the

cost function ĉ1 as Ŵ , T̂1, respectively.

Note that Ŵ (g) ≥ W (g) for all g ∈ L. Hence Ŵ (V1) ≥ W (V1) = V1. As argued

in Proposition 1, Ŵ is increasing and V̂1 must be the limit of Ŵ k(g) for any g by the
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Contraction Mapping Theorem. Hence

V1 ≤ Ŵ (V1) ≤ Ŵ 2(V1) ≤ . . .↗ V̂1,

whence V̂1 ≥ V1. From this and the fact that ĉ1(θ) < c1(θ) for all θ it follows that ˆ̃V1(θ) >

Ṽ1(θ) for all θ. Assume that T1(θ∗) > θ∗. Then we have V̂1(θ) > V1(θ) for all θ ∈ (θ∗, T1(θ∗)).

By the continuity of V̂1, V̂1(θ) > V1(θ) ≥ 0 for all θ in a neighborhood of T1(θ∗) as well, so

T̂1(θ∗) > T1(θ∗).

Let θ∗, θ
∗ denote the equilibrium thresholds when player 1's cost function is c1, and let

θ̂∗, θ̂
∗ denote the equilibrium thresholds when player 1's cost function is ĉ1. Since nothing

about player 2's problem has changed, T2 remains unchanged. θ̂∗, θ̂
∗ are characterized by

the conditions that θ̂∗ be a �xed point of T̂1 ◦ T2 and θ̂∗ = T2(θ̂
∗. As θ∗ = T1(θ∗) > θ∗ by

Proposition 1, we have T̂1(θ∗) > θ∗. Because T1 and T2 are weakly increasing, we have

θ∗ <
(
T̂1 ◦ T2

)
(θ∗) ≤

(
T̂1 ◦ T2

)2
(θ∗) ≤ . . .↗ θ̂∗

Hence θ̂∗ > θ∗. By an analogous argument θ̂∗ > θ∗. As for the claim that θ̂∗ − θ̂∗ > θ∗ − θ∗,

recall that, in Proposition 1, we argued that Ti(x)− Ti(y) < x− y whenever x > y are such

that Ti(y) > y. Here, that implies

θ̂∗ − θ∗ = T2(θ̂
∗)− T2(θ

∗) < θ̂∗ − θ∗,

which yields the result.

The proof of (ii) is similar to (i). Brie�y, denoting by (f̂θ)θ a new set of transition

probabilities, and by Ŵi, V̂i and T̂i the new operators, value functions and threshold mappings

under the new transition probabilities, we can show that Ŵ1(g) ≤ W (g) for any weakly

decreasing g, and Ŵ2(g) ≥ W2(g) for any weakly increasing g. Hence V̂1 ≤ V1 and V̂2 ≥ V2,

for �xed conjectures about the other player's behavior, which is to say that T̂1 ≤ T1 and

T̂2 ≤ T2. By a similar argument as above, this implies θ̂∗ ≤ θ∗ and θ̂
∗ ≤ θ∗.

Proof of Proposition 3. Note that both Vi(θt), i's equilibrium continuation utility starting in

state θt, and Pi(θt), i's equilibrium probability of winning starting in state θt, are themselves
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drift-di�usion processes by Itô's lemma:

dVi(θt) =

(
µ(θt)V

′
i (θt) +

σ2

2
V ′′
i (θt)

)
dt+ σVi(θt)dBt (7)

dPi(θt) =

(
µ(θt)P

′
i (θt) +

σ2

2
P ′′
i (θt)

)
dt+ σPi(θt)dBt (8)

At the same time, it follows from the Hamilton-Jacobi-Bellman equation for Vi that

0 = −ci(θ)− γVi(θ) + E(dVi(θ)),

and it follows from the law of iterated expectations that E(dPi(θ)) = 0.

Taking expectation of Equations 7 and 8 conditional on the value of θt,

ci(θ) + γVi(θ) = E(dVi(θ)) = µ(θ)V ′
i (θ) +

σ2

2
V ′′
i (θ)

0 = dPi(θ) = µ(θ)P ′
i (θ) +

σ2

2
P ′′
i (θ).

The relevant boundary conditions follow from the following argument. If players 1, 2 are

using threshold strategies such that the disputed region is [θ, θ], then V1(θ) = H1, V1(θ) = 0,

V2(θ) = 0, V2(θ) = H2 follow mechanically. Similarly P1(θ) = 1, P1(θ) = 0, P2(θ) = 0,

P2(θ) = 1.

In addition, it turns out that V ′
1(θ) = 0 i� θ = T1(θ), and V

′
2(θ) = 0 i� θ = T2(θ), where

the Ti are de�ned as in the discrete-time model. To see why, some machinery is required. For

θ ∈ [θ, θ], let Qt(θ) be the probability that, with the game having started in state θ, player

1 has not surrendered by time t; and de�ne Q(θ) =
�∞
0
e−γtQt(θ). De�ne Ṽ1(θ) =

V1(θ)
Q(θ)

for

θ < θ, and Ṽ1(θ) = limθ→θ Ṽ1(θ). Note that Ṽ1(θ) is the expected utility of player 1 under

the following assumptions: the initial state is θ; the stochastic process (θt)t snaps back to θ

if it ever hits θ; and player 1 never surrenders. In particular, Ṽ1(θ) is the expected utility of

player 1 under the following assumptions: the initial state is θ; the stochastic process (θt)t is

re�ecting at θ; and player 1 never surrenders. It is clear that Ṽ1(θ) = 0 (>,<) i� θ = T1(θ)

(<,>). In addition, since V1(θ) = Q(θ)Ṽ1(θ), for θ < θ, we have

V ′
1(θ) = Q′(θ)Ṽ1(θ) +Q(θ)Ṽ ′

1(θ).

Taking the limit as θ → θ, we obtain

V ′
1(θ) = Q′(θ)Ṽ1(θ) +Q(θ)Ṽ ′

1(θ) = Q′(θ)Ṽ1(θ),
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as Q(θ) = 0. It can be shown that Q′(θ) < 0; the result follows.

Proof of Proposition 4. See Appendix B.

Proof of Proposition 5. First, we will argue that θ∗(ν) − θ∗(ν) → 0 as ν → 0. Suppose

otherwise. Then, by the Bolzano-Weierstrass theorem, we can take a sequence νk → 0 such

that θ∗(νk) → θ∗∗, θ
∗(νk) → θ∗∗, and θ∗∗ < θ∗∗.

Take the limit of the players' equilibrium value functions Vi(θ; νk) as k → ∞, and denote

the limit by Vi(θ; 0). It follows that V1(·; 0), V2(·; 0) must satisfy the equilibrium conditions

in Proposition 3, in particular Equation 1, over the disputed region [θ∗∗, θ
∗∗], with the pa-

rameters µ(θ) ≡ 0, σ2 = 0, i.e., they must satisfy c(θ) + Vi(θ) ≡ 0, which is impossible.

Hence θ∗(ν)− θ∗(ν) → 0 as ν → 0.

At this point a digression is needed. For any �xed θ ∈ [−M,M ], consider a degenerate

version of the model in which µ(θ) ≡ µ(θ), c1(θ) ≡ c1(θ) and c2(θ) ≡ c2(θ) for all θ. Clearly

in this model the mapping T1(T2(θ)) is of the form θ +∆ for some ∆. Say θ is 1-favored if

∆ > 0, 2-favored if ∆ < 0, and balanced if ∆ = 0. Note that ∆ is a continuous and strictly

decreasing function of θ, and so there is a unique balanced state. We denote this state by θl.

Now the crucial observation is that, for any value of ν, we must have θl ∈ [θ∗(ν), θ
∗(ν)].

Indeed, if this were not the case, then the interval [θ∗(ν), θ
∗(ν)] would be made up entirely of

1-favored states or entirely of 2-favored states, in which case we would have T1(T2(θ
∗(ν)) >

θ∗(ν) or T1(T2(θ
∗(ν)) < θ∗(ν) respectively, a contradiction. Then, as θ∗(ν) − θ∗(ν) → 0, it

must be that θ∗(ν), θ
∗(ν) → θl.

Finally, if µ ≡ 0, then clearly the only balanced state is the one with c1(θ) = c2(θ).

Proof of Proposition 6. Let Vi(θ;x) be the players' continuation values after player 1 makes

a one-time concession which cedes [x, 1]. As we have assumed µ ≡ 0 and γ = 0, the

continuation values can be calculated from (3)-(4), taking θ∗ = θ∗(x), θ
∗ = θ∗(x). More

precisely,

V1(θ;x) = min

(
2

σ2

� θ∗(x)

θ

(λ− θ)c1(λ)dλ,

� x

0

v1(x̃)dx̃

)
.

Equivalently, V1(θ;x) = 2
σ2

� θ∗(x)
θ

(λ − θ)c1(λ)dλ if θ ≥ θ∗(x) and V1(θ;x) =
� x
0
v1(x̃)dx̃

otherwise. Note that the �rst expression depends only on x through θ∗(x) and is an increasing

function of θ∗(x), while the second expression is increasing in x.

From Proposition 4.(i)-(iii), we know that θ∗(x) increases in the size of the concession

(i.e., it is decreasing in x), since a marginal increase in player 1's concession always lowers

player 2's remaining prize value proportionally more than her own. Thus, there is x0 ≥ 0

such that θ∗(x) > θ i� x < x0. Choosing x
∗ = x0 then dominates any choice below x0 (which
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would still induce immediate surrender but leave a smaller prize for player 1). Player 1 thus

simply maximizes θ∗(x) over x ∈ [x0, 1]�an equivalent condition to θ∗(x) ≤ θ.

Proposition 7. Suppose that the prize is �nitely divisible, i.e., there is a sequence 0 = x0 <

x1 < . . . < xk = 1 such that only concession thresholds x = xi are feasible, with x∗ = xi

for some i; and player 1 can concede from �ghting over [0, xj) to �ghting over [0, xl) for any

l < j at any time t, while player 2 can only continue or surrender.

Assume that x∗, the optimal concession threshold in Proposition 6, is unique, and θ∗(x
∗) <

θ0. Then there is an equilibrium in which player 1 plays the same strategy as in Proposition

6 and obtains the same payo�. Moreover, she cannot obtain a higher payo� in any threshold

strategy equilibrium.

Proof. For the �rst part, consider the following strategy pro�le: player 1 makes the optimal

one-shot concession at t = 0, and afterwards player 1 (2) surrenders if θt hits θ
∗(x∗) (θ∗(x

∗)).

If player 1 deviates by not conceding or under-conceding at t = 0, player 2 expects player

1 to concede down to [0, x∗) immediately. If player 1 deviates by over-conceding, the two

players expect a continuation in which player 1 concedes to the optimal concession below x∗

and then no further partial concessions take place, and player 2 best-responds, etc.

Given this strategy pro�le, clearly player 2 has no incentive to surrender at t = 0.

Afterwards, since player 1 plays as in Proposition 6, player 2's best response is to surrender

whenever θt ≤ θ∗(x
∗). By construction, player 1's payo� is strictly lower if she over-concedes,

and no better if she under-concedes (indeed, her payo� will be strictly lower if she fails to

concede down to [0, x∗) by the time θt �rst reaches {θ∗(x∗), θ∗(x∗)}).
We prove the second part by induction on k. For k = 1, we are in the baseline game.

For k = 2, assume an equilibrium in threshold strategies in which player 2 surrenders when

θt ≤ θ∗(0, 1) and player 1 concedes down to [0, x1) when θt ≥ θ∗(0, 1). Of course, the

equilibrium after a concession is pinned down by Proposition 1, with θ∗(0, x1) = θ̃∗(0, x1),

θ∗(0, x1) = θ̃∗(0, x1).

There are two cases: x∗ = 1 or x∗ = x1. If x∗ = 1, we want to show that player 1's

equilibrium payo� is no higher than V1(θ0), where V1(θ) = V1(θ; 0, 1) is de�ned as in the

baseline model. By similar arguments as in Proposition 3, we can show that player 1's best

response as a function of θ∗(0, 1) satis�es the following: if θ∗(0, 1) < T−1
1 (θ̃∗(0, x1)), then it

is optimal for player 1 to concede down to [0, x1) for θt ≥ θ̃∗(0, x1), so θ
∗(0, 1) ≤ θ̃∗(0, x1).

(Again, the Ti are the same functions as in the baseline model, and the θ̃(·) are de�ned as in

the two-sided concessions model.) In this case, player 1's ex ante payo� is exactly V1(θ0; 0, x1),

her continuation payo� after a concession, which by the assumption that x∗ = 1 and (3) is

lower than V1(θ0). If θ∗(0, 1) = T−1
1 (θ̃∗(0, x1)), player 1 is indi�erent about conceding for

θt ∈ (θ̃∗(0, x1), θ̃
∗(0, x1)) and her ex ante payo� is V1(θ0) whatever she does.
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Finally, if θ∗(0, 1) > T−1
1 (θ̃∗(0, x1)), then it is optimal for player 1 to concede down to

[0, x1) only for θt ≥ T1(θ∗(0, 1)), so θ
∗(0, 1) = T1(θ∗(0, 1)) > θ̃∗(0, x1) by construction, i.e., a

partial concession must lead to immediate surrender by player 1. But then the conditions

pinning down θ∗(0, 1) and θ
∗(0, 1) are the same as in the model without concessions, whence

θ∗(0, 1) = θ̃∗(0, 1) and player 1's ex ante payo� is exactly V1(θ0) as in 6.

If x∗ = x1, a similar argument applies. Brie�y, if θ∗(0, 1) ≤ T−1
1 (θ̃∗(0, x1)), then player 1

is at least weakly willing to concede at t = 0 and her ex ante payo� is as in Proposition 6.

If θ∗(0, 1) > T−1
1 (θ̃∗(0, x1)), then θ

∗(0, 1) = T1(θ∗(0, 1)) > θ̃∗(0, x1), so a concession by player

1 leads to her surrender; the thresholds are as in the model without concessions; and player

1's payo� would then have to be V1(θ0), which by the assumption that x∗ = x1 is lower than

V1(θ0; 0, x1).

Now suppose the result is true for a general k0, and take k = k0 + 1. Denote by Ṽ1(θ)

player 1's continuation payo� after a concession to [0, xk−1). If this payo� is as would be

obtained in the equilibrium of Proposition 6 (that is, Ṽ1(θ) = V1(θ; 0, x̂), where x̂ is the

optimal concession subject to the restriction xi ≤ xk−1) then the same argument applies as

in the case k = 2; indeed, x̂ plays the role of x1 in the preceding argument. If player 1's

payo� is any lower, that is, Ṽ1(θ) ≤ V1(θ; 0, x̂) for all θ, then the same argument as in the

case k = 2 now implies that her ex ante payo� is at most

max(Ṽ1(θ), V1(θ)) ≤ max(V1(θ; 0, x̂), V1(θ)) = V1(θ; 0, x
∗).

Finally, Ṽ1(θ) cannot be higher than V1(θ; 0, x̂) by the inductive hypothesis.

Equilibria in which player 1's equilibrium payo� is strictly lower than what she obtains

in the one-shot case are possible. The logic is as follows: when all concessions by player 1

weaken her position, she chooses to concede nothing in the one-shot case�and, by doing

so, she can commit not to conceding in the future, unless she surrenders. However, when

the option to make a concession in the future is always open, player 2 may always expect

such a concession, and hence may have a higher (expected) continuation value and a lower

surrender threshold before a concession, whence player 1 may choose to concede. Such

equilibria disappear if we assume that partial concessions can only be made for a limited

time (i.e., for t ≤ t0); if player 1 can commit to not making partial concessions in the future;

if player 1 always concedes when indi�erent; or if player 1 never concedes when indi�erent.

Proof of Remark 1. Since (H ′
1(x), H

′
2(x)) = (v1(x), v2(x)), the slope of the feasible path of

prize pairs is v2(x)
v1(x)

. This is increasing in x since v2(x) is increasing and v1(x) is decreasing,

so the feasible path of prize pairs is strictly convex.
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As for the level curve H2(H1; θ
∗), note that, using (3)-(4),

∂H2(H1; θ
∗)

∂H1

=

∂H2(θ∗,θ∗)
∂θ∗

∂H1(θ∗,θ∗)
∂θ∗

=

∂
∂θ∗

(
2
σ2

� θ∗
θ∗
(θ∗ − λ)c2(λ)dλ

)

∂
∂θ∗

(
2
σ2

� θ∗
θ∗
(λ− θ∗)c1(λ)dλ

) =

=
−(θ∗ − θ∗)c2(θ∗)� θ∗

θ∗
−c1(λ)dλ

=
c2(θ∗)� θ∗

θ∗
c1(λ)dλ

.

As H1 grows while keeping θ
∗ constant, θ∗ decreases by Proposition 4. Then, by B1, c2(θ∗)

increases and
� θ∗
θ∗
c1(λ)dλ decreases, so ∂H2

∂H1
increases. Thus the level curves are strictly

convex.
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B Additional Proofs (For Online Publication)

Denote by H1(θ∗, θ
∗) the value of H1 which makes θ∗ the optimal surrender threshold for

player 1 when player 2's threshold is θ∗. De�ne H2(θ∗, θ
∗) analogously.

Lemma 7.
| ∂H1(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
is increasing in θ∗ for all θ∗ < θ∗.

Proof. We proceed in several steps. The general strategy of the proof will be to identify

values of the parameters (in particular c1, c2 and µ) that yield the tightest case, in the sense

that |∂H1(θ∗,θ∗)
∂θ∗

| decreases as fast as possible and |∂H2(θ∗,θ∗)
∂θ∗

| increases as fast as possible, and
then prove the result directly in that case.

We begin with |∂H2(θ∗,θ∗)
∂θ∗

|. First, some auxiliary de�nitions. De�ne V1(θ; θ, θ, c1, H) as

player 1's expected payo� under the following conditions: the initial state is θ, the (possibly

non-equilibrium) disputed region is [θ, θ], and player 1's cost function and prizes are c1,

H. De�ne V̂1(θ; θ, θ, c1, H) as the same object but under the additional assumption that

the stochastic process (θt)t is re�ecting at θ, and player 1 never surrenders. (Note that

V̂1(θ; θ, θ, c1, H) = V1(θ; θ, θ, c1, H) whenever θ = T1(θ).) De�ne V2, V̂2 analogously.

Normalize γ = 1. We can write

V̂2(θ∗; θ∗, θ
∗, c2, H) = −

� θ∗

θ∗

p(θ)c2(θ)dθ + p(θ∗)H,

where p(θ) are probability weights satisfying p(θ∗) = 1 −
� θ∗
θ∗
p(θ)dθ and independent of c2,

H. In addition, note that

0 = V2(θ∗; θ∗, θ
∗, c2, H2(θ∗, θ

∗)) = V̂2(θ∗; θ∗, θ
∗, c2, H2(θ∗, θ

∗)).

Now, for any ϵ > 0, write

0 = V2(θ∗ − ϵ; θ∗ − ϵ, θ∗, c2, H2(θ∗ − ϵ, θ∗)) = V̂2(θ∗ − ϵ; θ∗ − ϵ, θ∗, c2, H2(θ∗ − ϵ, θ∗)) =

= −
� θ∗

θ∗−ϵ
p(θ)c2(θ)dθ +QV̂2(θ∗; θ∗, θ

∗, c2, H2(θ∗ − ϵ, θ∗)) =

= −
� θ∗

θ∗−ϵ
p(θ)c2(θ)dθ +Q

[
−
� θ∗

θ∗

p(θ)c2(θ)dθ + p(θ∗)H2(θ∗ − ϵ, θ∗)

]
,

where p(θ)|[θ∗,θ∗] is the same function as in the previous expression; p(θ)[θ∗−ϵ,θ∗] is the prob-

ability of the future state being θ (before or after hitting θ∗); and Q = 1−
� θ∗
θ∗−ϵ p(θ)dθ.
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Equivalently, we can write

0 = −
� θ∗

θ∗−ϵ
p(θ)c2(θ)dθ +

(
1−

� θ∗

θ∗−ϵ
p(θ)dθ

)
p(θ∗) [H2(θ∗ − ϵ, θ∗)−H2(θ∗, θ

∗)] .

Taking ϵ→ 0, we obtain

|∂H2(θ∗, θ
∗)

∂θ∗
| = −∂H2(θ∗, θ

∗)

∂θ∗
=
p(θ∗)c2(θ∗)

p(θ∗)
. (9)

We are interested in the case where this expression increases as fast as possible, in the

following sense. Take parameters c2, µ and c̃2, µ̃, and denote by H2, H̃2 the corresponding

prizes. We say (c̃2, µ̃) > (c2, µ) if
| ∂H̃2(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
is increasing in θ∗. Then, if we prove Lemma 7

for (c̃2, µ̃), we have automatically proved it for (c2, µ).

Suppose c2 is strictly decreasing, and let c̃2 be a constant positive cost. By Equation 9,

we clearly have (c̃2, µ) > (c2, µ). We can then restrict our attention to the case where c2 is

constant. WLOG, we take c2 ≡ 1.

Next we will consider changes in µ. Write

|∂H2(θ∗, θ
∗)

∂θ∗
| = p(θ∗; θ∗, [θ∗, θ

∗])

p(θ∗; θ∗, [θ∗, θ∗])
:= A(θ∗),

where we have made it explicit that p(θ; θ0, [θ∗, θ
∗]) depends on the initial state, θ0, and the

disputed region, [θ∗, θ
∗]. Take ϵ > 0, and write

A(θ∗ + ϵ)

A(θ∗)
=
p(θ∗ + ϵ; θ∗ + ϵ, [θ∗ + ϵ, θ∗])

p(θ∗; θ∗[θ∗, θ∗])

p(θ∗; θ∗, [θ∗, θ
∗])

p(θ∗; θ∗ + ϵ, [θ∗ + ϵ, θ∗])

Now note that

p(θ∗; θ∗, [θ∗, θ
∗]) = Qp(θ∗; θ∗ + ϵ, [θ∗ + ϵ, θ∗])

p(θ∗ + ϵ; θ∗, [θ∗, θ
∗]) = Qp(θ∗ + ϵ; θ∗ + ϵ, [θ∗ + ϵ, θ∗]),

where Q =
(
1−

� θ∗+ϵ
θ∗

p(θ; θ∗, [θ∗, θ
∗])dθ

)
. Hence

A(θ∗ + ϵ)

A(θ∗)
=
p(θ∗ + ϵ; θ∗, [θ∗, θ

∗])

p(θ∗; θ∗, [θ∗, θ∗])
.

To rewrite this expression in a useful way we will need the following construction. Assume

that (θt)t starts at θ∗ and follows the usual drift-di�usion process, but that (θt)t is now

re�ecting at θ∗ and absorbing at θ∗ + ϵ. For θ ∈ [θ∗, θ
+ϵ), de�ne p̃(θ) as the probability that
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θt = θ, and de�ne p̃(θ∗ + ϵ) = 1−
� θ+ϵ
θ∗

p̃(θ)dθ. Then, for θ ∈ [θ∗, θ∗ + ϵ],

p(θ; θ∗, [θ∗, θ
∗]) = p̃(θ) + p̃(θ∗ + ϵ)p(θ; θ∗ + ϵ, [θ∗, θ

∗])

=⇒ A(θ∗ + ϵ)

A(θ∗)
=

p̃(θ∗ + ϵ)p(θ∗ + ϵ; θ∗ + ϵ, [θ∗, θ
∗])

p̃(θ∗) + p̃(θ∗ + ϵ)p(θ∗; θ∗ + ϵ, [θ∗, θ∗])
.

Now consider alternative non-decreasing drift functions µ̃ such that µ̃(θ) = µ(θ) for θ ∈
[θ∗, θ∗ + ϵ]. Note that decreasing µ̃|[θ∗+ϵ,θ∗] increases p(θ∗ + ϵ; θ∗ + ϵ, [θ∗, θ

∗]) and p(θ∗; θ∗ +

ϵ, [θ∗, θ
∗]) proportionally, without a�ecting p̃(θ∗ + ϵ) or p̃(θ∗), and hence it increases A(θ∗+ϵ)

A(θ∗)
.

Hence, in order to maximize A(θ∗+ϵ)
A(θ∗)

, it is optimal to take µ̃(θ) = µ(θ∗+ϵ) for all θ ∈ [θ∗+ϵ, θ
∗].

Taking the limit as ϵ→ 0, it follows that in order to maximize |∂H2(θ∗,θ∗)
∂θ∗

| at a certain value

of θ∗, it is optimal to take µ constant over [θ∗, θ
∗]. (For now, the optimal µ might be a

function of θ∗.)

Next we work with |∂H1(θ∗,θ∗)
∂θ∗

|. Take ϵ > 0 and write

V̂1(θ∗; θ∗, θ
∗, c1, H1(θ∗, θ

∗)) = V̂1(θ∗; θ∗ − ϵ, θ∗, c1, H1(θ∗ − ϵ, θ∗))

H1(θ∗, θ
∗) = −

� θ∗

θ∗−ϵ
p(θ)c1(θ)dθ + p̂(θ∗ − ϵ)H1(θ∗ − ϵ, θ∗),

where p(θ) = p(θ; θ∗, [θ∗ − ϵ, θ∗]) and the process is assumed to be re�ecting at θ∗, and

p̂(θ∗ − ϵ) = 1−
� θ∗
θ∗−ϵ p(θ)dθ. Rearranging,

H1(θ∗ − ϵ, θ∗)−H1(θ∗, θ
∗) =

� θ∗

θ∗−ϵ
p(θ)(c1(θ) +H1(θ∗ − ϵ, θ∗))dθ

Let p̃(θ; θ∗, [θ∗, θ
∗]) be the probability of θt being equal to θ in the future, when the initial state

is θ∗, the disputed region is [θ∗, θ
∗], and the stochastic process governing (θt)t is re�ecting at

θ∗ and θ
∗. Then, for θ ≥ θ∗, p(θ) =

(
1− p̂(θ∗ − ϵ)−

� θ∗
θ∗−ϵ p(θ)dθ

)
p̃(θ; θ∗, [θ∗, θ

∗]). It can be

shown that
� θ∗
θ∗−ϵ p(θ)dθ ∈ O(ϵ2) for small ϵ, and of course p̂(θ∗) = 1. So, taking ϵ→ 0,

|∂H1(θ∗, θ
∗)

∂θ∗
| = |p̂′(θ∗)|

� θ∗

θ∗

p̃(θ; θ∗, [θ∗, θ
∗]))(c1(θ) +H1(θ∗, θ

∗))dθ.

(p̂′(θ∗) is only a left-derivative as p̂(θ) is unde�ned for θ > θ∗.)

Now note that, for any ϵ > 0, there is a �xed K ∈ (0, 1) such that p̃(θ; θ∗, [θ∗, θ
∗]) =

Kp̃(θ; θ∗ + ϵ, [θ∗ + ϵ, θ∗]) for all θ ∈ [θ∗ + ϵ, θ∗]. Hence, denoting p̃(θ) = p̃(θ; θ∗, [θ∗, θ
∗]),

|∂H1(θ∗+ϵ,θ∗)
∂θ∗

|
|∂H1(θ∗,θ∗)

∂θ∗
|

=
|p̂′(θ∗ + ϵ; θ∗ + ϵ)|

|p̂′(θ∗; θ∗)|

� θ∗
θ∗+ϵ

p̃(θ)(c1(θ) +H1(θ∗ + ϵ, θ∗))dθ� θ∗
θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

� θ∗
θ∗
p̃(θ)dθ� θ∗

θ∗+ϵ
p̃(θ)dθ

. (10)
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Note that by construction
� θ∗
θ∗
p̃(θ)dθ = 1. Then second factor in Equation 10 is approxi-

mately

1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗)) +
� θ∗
θ∗
p̃(θ)|∂H1(θ∗,θ∗)

∂θ∗
|� θ∗

θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

=1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗)) + |∂H1(θ∗,θ∗)
∂θ∗

|� θ∗
θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

=1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗)) + |p̂′(θ∗)|
� θ∗
θ∗
p̃(θ; θ∗, [θ∗, θ

∗]))(c1(θ) +H1(θ∗, θ
∗))dθ� θ∗

θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

=1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗))� θ∗
θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

− ϵ|p̂′(θ∗)|.

This expression equals 1− ϵp̃(θ∗)− ϵ|p̂′(θ∗)| if c1 is constant, and is strictly larger otherwise.

Since c1 appears nowhere else in Equation 10, it follows that in order to make the RHS of

Equation 10 as small as possible it is optimal to take c1 constant. Next, we will argue brie�y

that it is optimal to also take µ constant. Denoting H1(θ∗, θ
∗) = V1(θ∗), note that we are

e�ectively trying to minimize
V ′′
1 (θ∗)

V ′
1(θ∗)

. Recall that V1(θ) must solve Equation 1:

c1 + γV1(θ) = µ(θ)V ′
1(θ) +

σ2

2
V ′′
1 (θ),

with boundary conditions V1(θ
∗) = V ′

1(θ
∗) = 0. Now suppose µ is not constant, so strictly

increasing somewhere. Construct a new pair of parameters (c̃1, µ̃) as follows: µ̃(θ) = µ(θ∗)

for all θ ∈ [θ∗, θ
∗] and c̃1(θ) = c1(θ) + (µ̃(θ) − µ(θ))V ′

1(θ) for all θ ∈ [θ∗, θ
∗].25 Then,

by construction, the solution to Equation 1 is the same under these new parameters; in

particular
V ′′
1 (θ∗)

V ′
1(θ∗)

. In addition, µ̃ is non-decreasing (in fact constant), and c̃1 satis�es c̃1(θ) ≥
c̃1(θ∗) = c1(θ∗) for all θ, with the inequality being strict at some θ. But then, by our previous

discussion, if we instead take as our parameters (č1, µ̌) by č1 ≡ 1 and µ̌ = µ̃, we will attain

a lower value of
V ′′
1 (θ∗)

V ′
1(θ∗)

.

The next step of the proof is to prove, under the assumption of constant c1, c2 and µ,

that the tightest case is when µ = 0.

Let V (x) be de�ned as the solution to the ODE 1 + V (x) = µV ′(x) + σ2

2
V ′′(x), with

the initial conditions V (0) = V ′(0) = 0. Note that this is the same as Equation (1) if we

normalize c ≡ 1, γ = 1.

Disregarding the initial conditions, this ODE has a constant solution V ≡ −1, and the

homogeneous ODE has general solution k1e
α1x + k2e

α2x, where α1 and α2 are the solutions

25The function V ′
1 used here is the solution to Equation 1 under the original parameters (c1, µ).
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to the quadratic equation 1 = µα + σ2

2
α2, i.e., α1 =

−µ+
√
µ2+2σ2

σ2 , α2 =
−µ−

√
µ2+2σ2

σ2 .

Since we require V (0) = −1 + k1 + k2 = 0 and V ′(0) = k1α1 + k2α2 = 0, it follows that

k1 =
α2

α2−α1
and k2 = − α1

α2−α1
. Then

V (x) = −1 +
α2

α2 − α1

eα1x − α1

α2 − α1

eα2x.

Write Vµ(x) to make the dependence of V on µ explicit. Then what we aim to show is

that, if µ > 0, then
V ′
µ(x)

V ′
0(x)

is decreasing, and if µ < 0, then
V ′
µ(x)

V ′
0(x)

is increasing.

Normalize σ2 = 2. (We can do this by means of two changes of variables, rescaling

time and the state space, respectively.) Then α1,2 =
−µ±

√
µ2+4

2
. For the sake of simplifying

further, write µ̃ = µ
2
. Then α1,2 = −µ̃ ±

√
µ̃2 + 1. Finally, make the following change of

variables: y = ex, and denote V̂ = V ◦ ln. Then

V (x) = V (ln(y)) = V̂ (y) = −1 +
α2

α2 − α1

yα1 − α1

α2 − α1

yα2 .

We then aim to show that if µ > 0, then
V̂ ′
µ(y)

V̂ ′
0(y)

is decreasing for y ≥ 1, and that if µ′ < 0,

then
V̂ ′
µ′ (y)

V̂ ′
0(y)

is increasing for y ≥ 1. We will use the following

Lemma 8. Let f, g : [a, b] → R be measurable positive functions such that f(x)
g(x)

is increasing

for x ∈ [a, b]. De�ne F,G : [a, b] → R as F (x) =
� x
a
f(s)ds, G(x) =

� x
a
g(s)ds. Then F (x)

G(x)
is

increasing for x ∈ [a, b].

Proof. Write f(x)
g(x)

= ρ(x), and F (x)
G(x)

=
� x
a g(s)ρ(s)ds� x

a g(s)ds
. If x′ > x, then

F (x′)

G(x′)
=

� x′
a
g(s)ρ(s)ds� x′
a
g(s)ds

=

� x
a
g(s)ρ(s)ds+

� x′
x
g(s)ρ(s)ds� x

a
g(s)ds+

� x′
x
g(s)ds

.

Then F (x′)
G(x′)

≥ F (x)
G(x)

, since
� x′
x g(s)ρ(s)ds
� x′
x g(s)ds

≥ ρ(x) ≥
� x
a g(s)ρ(s)ds� x

a g(s)ds
.

By this Lemma, it is enough to prove that if if µ > 0, then
V̂ ′′
µ (y)

V̂ ′′
0 (y)

is decreasing for y ≥ 1,
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and that if µ′ < 0, then
V̂ ′′
µ′ (y)

V̂ ′′
0 (y)

is increasing for y ≥ 1. Now note that

V̂0(y) = −1 +
y

2
+

1

2y
, V̂ ′′

0 (y) =
1

y3

V̂ ′
µ(y) =

α1α2

α2 − α1

yα1−1 − α1α2

α2 − α1

yα2−1 ∝ yα1−1 − yα2−1

V̂ ′′
µ (y) ∝ (α1 − 1)yα1−2 − (α2 − 1)yα2−2

V̂ ′′
µ (y)

V̂ ′′
0 (y)

∝ (α1 − 1)yα1+1 − (α2 − 1)yα2+1

We can verify that, if µ > 0, α1 ∈ (0, 1) and α2 < −1, so α1 − 1 < 0, α1 + 1 > 0, α2 − 1 < 0

and α2 + 1 < 0. Hence
V̂ ′′
µ (y)

V̂ ′′
0 (y)

is decreasing in y. Similarly, if µ < 0, α1 > 1 and α2 ∈ (−1, 0),

so α1 − 1 > 0, α1 + 1 > 0, α2 − 1 < 0 and α2 + 1 > 0. Hence
V̂ ′′
µ (y)

V̂ ′′
0 (y)

is increasing in y. This

�nishes the proof.

Finally, note that in the case where c1 ≡ c2 ≡ 1 and µ ≡ 0, the result is (weakly) trivially

true, as H1(θ∗, θ
∗) ≡ H2(θ∗, θ

∗) so that
| ∂H1(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
≡ 1. It follows from our arguments that,

if c1 and c2 are strictly increasing (decreasing), then
| ∂H1(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
will be strictly increasing

instead.

Proof of Proposition 4. Parts (i) and (ii) can be proved in the same fashion as their analogues

in Proposition 2.

Part (iii) is a consequence of Lemma 7. Indeed, suppose WLOG that µ ≤ 0, and H1,

H2 are increased to H ′
1, H

′
2 with

H′
1

H2
= H1

H2
. We want to show that θ∗ increases. This is

equivalent to showing that, if H2 is increased to H ′
2, the unique value H̃1 > H1 that leaves

θ∗ unchanged satis�es H̃1 < H ′
1, i.e.,

H̃1

H2
< H1

H2
.

This is equivalent to showing that H1(θ∗,θ∗)
H2(θ∗,θ∗)

is increasing in θ∗. But that follows from the

fact that
∂H1(θ∗,θ

∗)
∂θ∗

∂H2(θ∗,θ∗)
∂θ∗

is increasing in θ∗ (Lemma 7) combined with Lemma 8.

C Multi-Dimensional State

In this Section, I present an extended model that allows for a multi-dimensional state of the

world. As in Section 2, we assume two players living in discrete time with in�nite horizon.

In each period, each player can choose to continue (C) or surrender (S). There is a state

of the world θt ∈ M = R ×∏k
i=1[−Mi,Mi] which is common knowledge at all times. The
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initial θ0 is a parameter. For t > 0, it evolves according to a Markov process:

P (θt+1 − θt ≤ x|θt) = Fθt(x),

where, for each θ, Fθ : M → [0, 1] is an absolutely continuous joint c.d.f. with density fθ,
26

and x ≤ y i� xi ≤ yi for all i.

Before proceeding we will need two de�nitions. Denote v = (1, 0, . . . , 0) ∈ Rk+1. First,

given two distributions G, H over M, we say that G FOSDs H if there is a probability space

(Ω,F , P ) in which there exist random variables X, Y , Z : Ω → Rk+1 such that X ∼ G,

Y ∼ H, X = Y + Z, and Z(ω) ≡ α(ω)v for a non-negative random variable α : Ω → R≥0.

That is, X always di�ers from Y by a weakly positive multiple of v. Second, we will say

that a set A ⊆ M is monotonic if θ ∈ M =⇒ θ + av ∈ M for all a > 0. Analogously, A is

antimonotonic if θ ∈ M =⇒ θ + av ∈ M for all a < 0.

We will assume that, for some η > 0,

A1' fθ is continuous in θ. More precisely, the mapping θ 7→ fθ is continuous, taking the

1-norm in the codomain.

A2' Fθ is weakly FOSD-monotonic in θ for all θ ∈ M, in the following sense: if θ, θ′ are

such that θ = θ′ + av for some a > 0, then Fθ FOSDs Fθ′ .

A3' For all θ ∈ M, supp(Fθ) is a convex compact set with nonempty interior such that

0 ∈ supp(Fθ) ⊆ B(0, η) ∩
(
R×∏k

i=1[−Mi − θi,Mi − θi]
)
.

Assumptions A1' and A3' are natural adaptations of the analogous assumptions given in Sec-

tion 2. The appropriate version of A2�the assumption ruling out mean-reverting processes�

is less obvious. Intuitively, A2' says that, if a state θ is higher than another state θ′ (in the

sense of being up upwards in the direction v, i.e., higher in the �rst dimension), then the drift

of the state conditional on starting at θ is also shifted up in the direction v. (In particular,

A2 is automatically true if fθ is equal to a �xed density f for all θ.)

We assume the following about the players' payo� functions:

B1' c1(θ) is strictly increasing, and c2(θ) is strictly decreasing, in the �rst argument of θ

(i.e., in the direction v). That is, if θ = θ′ + av for a > 0, then c1(θ) > c1(θ
′) and

c2(θ) < c2(θ
′).

B2' ci(θ) is C
1.

26That is, Fθ(x) is an absolutely continuous function of x such that Fθ(x) ≥ 0 for all x, Fθ(x) is weakly

increasing in all arguments of x, lims→∞ Fθ(s,M1, . . . ,Mk) = 1, and
∂Fk+1

θ

∂x1...∂xk+1
(x) = fθ(x) a.e.
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B3' There is a �nite D > 0 such that, for any θ ∈ M, there are a < b ∈ R such that

c1(θ + xv) ≤ 0 for all x ≤ a, c2(θ + xv) ≤ 0 for all x ≥ b, and b− a ≤ D.

B5' Hi >
−ci(θ)
1−δ for i = 1, 2 and all θ ∈ M.

B6' δHi > c1(θ) + c2(θ) for i = 1, 2 and all θ ∈ M.

Again these are analogous to Assumptions B1-B6. B1' now requires that state shifts in

the direction v are bad for player 1 and good for player 2, while B3' requires that high enough

positive (negative) shifts in the direction v take player 2 (1) into a region where �ghting yields

a bene�t rather than a cost.27 No analog of B4 is needed as we have e�ectively takenM = ∞
in the relevant (�rst) dimension.

The following Proposition characterizes the equilibrium of this game.

Proposition 8. There is a unique SPE. In it, player 1 surrenders whenever θt ∈ A, and

player 2 surrenders whenever θt ∈ B, where A, B ⊂ M are disjoint sets such that A is

monotonic and B is antimonotonic.

Proof. We provide only a sketch of the proof, as it is largely analogous to the proof of

Proposition 1.

The �rst step is to note that the game is supermodular, in the following sense: order the

players' strategy spaces so that a �higher� strategy for player 1 is one with a higher surrender

probability at every history, and a �higher� strategy for player 2 is one with a lower surrender

probability at every history. Then, given two strategies ψ ≥ ψ′ for player 1, player 2's best

response to ψ must be weakly higher than her best response to ψ′. The proof is similar to

that of Lemma 1. Brie�y, the reason is that player 2's equilibrium payo� at any history must

be weakly higher when facing a player 1 more likely to surrender, and up to indi�erence,

player 2 ought to surrender i� her payo� from continuing is negative. Then all equilibria are

bounded in this sense between a greatest and a smallest equilibrium.

Call a strategy for player i (anti)monotonic if it has player i surrender whenever θ falls

in a (anti)monotonic set A. We refer to such a strategy simply by its surrender set A.

The second step is to note that, if player 1 plays a monotonic strategy A, then player 2's

best response is an antimonotonic surrender set BR2(A); conversely, if player 2 plays an

antimonotonic set B, player 1's best response BR1(B) is monotonic. It follows that, in both

the greatest and the smallest equilibrium of the game, player 1's strategy is monotonic and

player 2's is anti-monotonic.

27For technical reasons, B3' also requires that the gap between the players' dominance regions be uniformly
bounded in a certain sense. Our results hold for any D, so this condition can be relaxed as much as desired.
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The third step is to show that the greatest and the smallest equilibrium are identical (up

to measure zero). Denote player 1's and 2's surrender regions in the greatest equilibrium

by A, B respectively, and their surrender regions in the smallest equilibrium by A′, B′,

respectively. By assumption, A ⊇ A′ and B ⊆ B′. Assume that at least one of these

inclusions is strict (otherwise we are done).

It can be shown that the players' best-response mappings are contractions in a certain

sense. Namely, given two monotonic sets C ⊇ C ′, let d(C,C ′) = inf{a : C + av ⊆ C ′}.28
De�ne d analogously for nested pairs of antimonotonic sets. Then, using Assumptions A2'

and B1', it can be shown that if d(C,C ′) > 0 then d(BR2(C), BR2(C
′)) < d(C,C ′) for C ⊇ C ′

monotonic, and analogously for antimonotonic sets. The key point is as follows: suppose

θ ∈ ∂BR2(C) for some monotonic set C (i.e., player 2 is indi�erent about surrendering in

state θ when C is player 1's surrender region). Then she must strictly prefer to continue

in state θ + av when player 1's surrender set is C + av, for any a > 0, due to assumptions

A2' and B1'. It follows that BR2(C + av) ⊊ BR2(C) + av for any a > 0. In particular,

BR2(C
′) ⊆ BR2(C+d(C,C ′)v) ⊊ BR2(C)+d(C,C

′)v for any C ⊇ C ′ monotonic. Moreover,

the closure of BR2(C + d(C,C ′)v) must be contained in the interior of BR2(C) + d(C,C ′)v.

From here, it follows29 that d(BR2(C + d(C,C ′)v,BR2(C) + d(C,C ′)v) > 0 and hence

d(BR2(C), BR2(C
′)) < d(C,C ′). The argument is analogous for player 1.

But then d(B,B′) < d(A,A′) < d(B,B′), a contradiction.30 That A and B are disjoint

follows from Assumption B6'.

This generalized model nests the following natural example, among others. Consider a

price war between two duopolists. Let θt = (θ1t, θ2t). Assume that c1(θ) is strictly increasing

in θ1 and c2(θ) is strictly decreasing in θ1, while both �ow costs are decreasing in θ2. We

can interpret θ1 as representing the relative market shares of the two �rms, and θ2 as repre-

senting total demand. Note that A2' is satis�ed automatically if we assume that fθ ≡ f is

independent of θ.

In this context, a model with a one-dimensional state, as in Section 2, implicitly assumes

that the size of the pie, measured by θ2t, is �xed and the �rms can only steal market share

from each other, so that player 2's market share is a su�cient statistic for the state of the

war. In contrast, the model in this Section allows for changes in the distribution of the pie

as well as the size of the pie.

The main properties of the equilibrium found in Proposition 1 are still present here: the

28Given a set S and a vector v, we denote S + v = {s+ v : s ∈ S}.
29Here, we use that

∏k
i=1[−Mi,Mi] is compact.

30Assumption B3' guarantees that d(A,A′), d(B,B′) are �nite.
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equilibrium is still unique, and is given by three sets�a surrender region for each player, both

separated by a disputed region. It can be shown that, if the initial state is in the disputed

region, both players have a positive probability of winning, and they both have positive

expected payo�s. In addition, Proposition 2 can be extended to this model: increasing H1

will shrink player 1's surrender region and expand player 2's, etc.

Among other things, this extension is useful in comparing my main model to Georgiadis

et al. (2022). Georgiadis et al. (2022) studies a war of attrition with a time-varying, one-

dimensional state θt which a�ects both players symmetrically, rather than in opposite ways.

Player 1 is assumed to have a lower outside option; the players are otherwise identical.31 The

authors show that, in every (Markovian) equilibrium of their model, there is a player who

is guaranteed to quit �rst, regardless of how the state evolves; but who this player is may

depend on the equilibrium. More precisely, there is always an equilibrium in which player

1 never surrenders before player 2. If the outside options di�er by enough, this is the only

equilibrium; else there are also equilibria in which player 2 never surrenders before player 1.

These results contrast with the ones in this paper. Indeed, the equilibrium may not be

unique; in every equilibrium, there is no uncertainty about who quits �rst; and, consequently,

the player who surrenders �rst plays as if she expected the opponent to never surrender (in

contrast, in this paper, both players �gamble� on the other player surrendering �rst).

The model in this Section�indeed, even the duopoly example itself�approximately nests

both Georgiadis et al. (2022) and the main model from Section 2. Georgiadis et al. (2022)

corresponds to the case of constant θ1t, while model from Section 2 corresponds to the case

of constant θ2t. The model in this Section allows us to consider any (imperfect) correlation

structure, and hence can approximate both extremes.

More precisely, let θ1t = µdt+ σdBt and θ2t = µ̃dt+ σ̃B̃t, where Bt, B̃t are independent

Brownian motions. Then setting µ̃ = σ̃ = 0 yields a degenerate case analogous to our

baseline model, whereas setting µ = σ = 0 yields a degenerate case analogous to the model

in Georgiadis et al. (2022), in which their main results hold. Proposition 8 shows that the

main results from our baseline model survive for σ, σ̃ > 0. Moreover, it can be shown that,

as σ, µ → 0, the selected equilibrium converges to one in which player 2�the one with the

higher outside option�always exits �rst. The equilibrium multiplicity shown in Georgiadis

et al. (2022) arises only if all uncertainty about the players' future relative strengths is

eliminated.

31This is equivalent to player 1 having a higher prize and lower costs.
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