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1 Introduction

The war of attrition is a model with wide applicability in economics and politics. Two

�rms in a duopoly engaging in a price war (Fudenberg and Tirole, 1986); an activist group

boycotting a �rm (Egorov and Harstad, 2017); a government facing a protest movement; two

political parties delaying a �scal adjustment in hopes of shifting blame onto the other party

(Alesina and Drazen, 1991); or a protracted military con�ict, such as the Western Front of

World War I, can all be understood as wars of attrition.

In the classic war of attrition (Smith, 1974; Hendricks, Weiss and Wilson, 1988), two

players �ght over a prize by paying �ow costs until one surrenders. Both the value of the

prize and the costs of continuing the war are deterministic and publicly known. As is well

known, this model allows for equilibria in which either player surrenders immediately, as

well as an equilibrium in which either player may win, and the length of the war is random

(Fudenberg and Tirole, 1991). Therefore, the classic model is silent on the crucial questions

of which player should win the war, and how long it will take before the loser concedes.1

The assumption that payo�s are perfectly predictable not only leads to a multiplicity of

equilibria. It also elides a crucial feature of most practical applications: the fact that, as

they unfold, wars change in unexpected ways that may favor either player. For example,

take the case of two ride-sharing companies that cut prices in an attempt to drive each other

out of business. Both �rms expect to lose money, but cannot know how their market shares

will change over time, or how much capital they can raise to survive; this information is only

revealed as the price war progresses. Similarly, in the middle of a prolonged protest, neither

the government nor the protesters know how public opinion will shift as the stalemate drags

on. And weather changes (Winters, 2001), as well as unexpected battle�eld outcomes, can

change the course of (literal) wars.

Motivated by these observations, this paper models a war of attrition that evolves over

time. The model presented is identical to the classic war of attrition, except that there is a

state of the world, θt, which is commonly observed at all times, changes stochastically over

time, and a�ects the �ow costs that players must pay to continue the war. In the baseline

model, θt parameterizes the extent to which current conditions in the war favor one player

over the other: high values of θt mean high costs for player 1 and low costs for player 2,

while low values of θt mean the opposite.

1Some papers in this literature (e.g., Smith (1974), Bliss and Nalebu� (1984), Maskin and Tirole (1988),
Kapur (1995), Wang (2009), Pitchford and Wright (2012), Montez (2013)) sidestep the issue of equilibrium
multiplicity by focusing on the mixed strategy equilibrium with no instantaneous concession. This is a
sensible approach only when the players are symmetric; in the asymmetric case, the mixed equilibrium
gives the weaker player (the one with higher cost-to-prize ratio) a higher chance of winning�an implausible
prediction.
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Under mild assumptions, the game has a unique equilibrium, with the following structure.

So long as θt lies in a certain interval, referred to as the disputed region, both players continue

�ghting, and they have strict incentives to do so. When θt reaches an extreme enough value as

to leave the disputed region, the disadvantaged player surrenders. Both players have positive

winning probabilities, yet the equilibrium is in pure strategies, and there is no immediate

surrender�in fact, under some conditions, the length of the war is bounded away from zero.

In these ways, the equilibrium di�ers qualitatively from those obtained in the classic war of

attrition as well as reputational perturbations of it (Abreu and Gul, 2000). The equilibrium

also has sensible comparative statics: if a player's prize increases or her cost decreases, her

probability of winning increases, both because she is more willing to �ght and because her

increased belligerence makes victory harder to attain for the opponent.

The baseline model is closely related to the �war of information� modeled in Gul and

Pesendorfer (2012). Gul and Pesendorfer model two parties that provide costly information

to a voter about which party is better; the voter's changing posterior serves as the state

variable. In equilibrium, only the �trailing� party wants to provide information, which leads

to a speci�c formulation of the cost functions. The model in this paper extends Gul and

Pesendorfer (2012) by allowing simultaneously for general cost functions, discounting, and a

state variable that may drift in one player's favor or be multi-dimensional (see Section 5).

In particular, I provide conditions on these underlying objects that are general enough as to

be tight, in a sense I make precise.

I then use the baseline model to perform two exercises. First, I consider the limit of the

solution as the movement of the state θt becomes arbitrarily slow. This limit equilibrium is

an equilibrium of the classic war of attrition, albeit one augmented with a payo�-irrelevant,

changing state variable. I show that, if the players' cost-prize ratios di�er, the stronger

player (with a higher prize or lower cost) wins immediately.2 However, when the players

are evenly matched, the limit equilibrium leverages the state variable θt as a coordination

device, and it features less average delay than the mixed equilibrium of the classic war of

attrition, though still a positive amount.

Second, I show how the evolving war of attrition can be extended to allow for additional

actions besides continuing to �ght and surrendering completely. In particular, I allow one

player to unilaterally concede part of the prize to the opponent, and then keep �ghting over

the rest. For example, in the context of a protest, the government may cede to some, but not

all, of the protesters' demands, in an attempt to defuse the protest at the lowest possible cost.

This exercise is uniquely tractable in my setting, relative to reputational models, because

2This matches the predictions of reputational models (e.g., Abreu and Gul (2000)), as long as the players'
probabilities of being �commitment types� are taken to zero at similar speeds.
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a concession does not carry signaling content.3 The general principle that arises is that

partial concessions can be worthwhile, but only if they reduce the opponent's incentive to

�ght strictly more than the conceding player's. In particular, making unilateral concessions

is never useful if both players value di�erent parts of the prize equally (for example, if the

prize is simply a pot of money), but it may be optimal if the prize is heterogeneous, with

the two players valuing certain parts disproportionately (as may be the case with territory).

Furthermore, it may be the case that in equilibrium some concessions are made, but they

do not exhaust the prize, so a smaller con�ict over the remainder follows.

Besides the works already mentioned, this paper is related to four broad strands of

literature. First, many variants of the war of attrition obtain equilibrium selection by adding

reputational concerns. This approach, applied to exit in duopoly (Fudenberg and Tirole,

1986), entry deterrence (Kreps andWilson, 1982; Milgrom and Roberts, 1982) and bargaining

(Abreu and Gul, 2000), generally yields a unique equilibrium when the players have a positive

probability of being �irrational� types who never surrender. A central result of this literature

is that, even when extreme types are rare, the incentive to pretend to be extreme shapes the

equilibrium behavior of all types.4 In our model, a related, but less in�uential role, is played

by dominance regions at very high or low values of θt.

Whereas in reputational models there is private information, and �ghting is a costly

signal of resolve, in my model there is symmetric uncertainty, and �ghting is a gamble that

the war will turn in the player's favor. This distinction is empirically relevant. For instance,

in a duopoly, a credible revelation of �nancial statements, or an act of corporate espionage,

could radically alter a reputation-driven price war or end it immediately, while it would have

no impact on a war sustained by shared expectations of an uncertain future. As noted above,

the two settings diverge further if additional actions are available: a partial concession may

be a smart play that saps the opponent's motivation to �ght, but in a reputational model,

it may be taken to signal weakness.

Secondly, there is a small but growing literature on dynamic games with a changing state

of the world. For instance, Ortner (2016) studies a game of bargaining with alternating o�ers

where the bargaining protocol (i.e., the identity of the player making o�ers) is driven by a

Brownian motion. Ortner (2017) considers two political parties bargaining in the shadow of

an election; if an agreement is reached, the result a�ects the relative popularity of the parties,

which otherwise evolves as a Brownian motion and eventually determines the outcome of the

election. In Ortner (2013), optimistic players bargain over a prize whose value changes over

3By contrast, adding partial concessions to the classic war of attrition would not yield sharp predictions
due to the extreme multiplicity of equilibria.

4This striking result has some extreme implications. For instance, if one player's probability of being
irrational is arbitrarily small, and the other's is zero, the second player must surrender immediately.
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time. The closest paper in this group is a contemporaneous paper by Georgiadis, Kim and

Kwon (2022), which also models a war of attrition with a changing state of the world that

a�ects both players. The crucial di�erence is that, in Georgiadis et al. (2022), changes in

the state a�ect both players equally, while in this paper they a�ect the players in opposite

ways. An interpretation in the duopoly setting is that the state in Georgiadis et al. (2022)

tracks the size of the market, while in this paper it tracks market shares. This di�erence

leads to contrasting results: in Georgiadis et al. (2022), the equilibrium is unique only if the

players' incentives to �ght di�er substantially, and in every equilibrium the identity of the

�rst player to quit is known in advance. In Section 5, I show that both their model and my

benchmark model are nested in a model with a two-dimensional state with a common-values

dimension and an adversarial dimension. That model reduces to my benchmark model when

only the second dimension changes over time, and to Georgiadis et al. (2022) when only the

�rst one changes. I �nd that, in the general case in which both dimensions change over time,

my results survive�that is, there is a unique equilibrium, and either player may be the �rst

to quit.

Another cluster of papers in this vein studies races in which two players exert e�ort in

order to move the state in their favor. In some of these models, each player is at a certain

distance from a ��nish line� (Harris and Vickers, 1985). More closely related are tug-of-war

models in which e�ort pushes a common state towards a player's preferred �nish line (Harris

and Vickers, 1987; Budd, Harris and Vickers, 1993; Moscarini and Smith, 2011; Cao, 2014).

These models are connected to this paper both by motivating examples (e.g., a price war)

and the gist of their results: the fact that a disfavored enough player quits in our model is

related a common result in this literature, whereby the laggard in a race tends to exert lower

e�ort due to a discouragement e�ect. However, these models di�er from ours in that the

e�ort choice is more �exible (usually continuous) than simply continuing or quitting, and

equilibria in these models are not unique under general conditions.5

Third, the paper is related to a body of work on con�ict in international relations (Smith,

1998; Slantchev, 2003a,b; Powell, 2004). The closest paper in this family, Smith (1998),

models a war in which the players �ght over a sequence of �forts�, the players' payo�s depend

on how many forts they hold, and either player may surrender at any time. While this setting

is prima facie similar to the one in this paper, the model in Smith (1998) has a potentially

large set of equilibria that cannot be fully characterized in general.

Finally, the present paper also contributes to the literature on supermodular games

5For instance, Harris and Vickers (1987) and Moscarini and Smith (2011) give conditions for uniqueness
of a symmetric equilibrium in a tug-of-war, but asymmetric equilibria also exist. Budd et al. (1993) shows
uniqueness only when the players are very impatient or the state evolves very noisily, while Cao (2014)
assumes quadratic costs and no discounting.
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started by Topkis (1979) and Milgrom and Roberts (1990). My approach exploits the fact

that the war of attrition is a supermodular game when players' strategies are ordered in

opposite ways (i.e., player 1's �high� strategy is to continue while player 2's is to surrender).

The way in which perturbing the state leads to equilibrium uniqueness is also reminiscent

of results in global games (Morris and Shin, 1998) and related work (Burdzy, Frankel and

Pauzner, 2001).

The paper proceeds as follows. Section 2 presents the baseline model in discrete time,

characterizes its equilibrium and comparative statics, and then presents a continuous time

version. Section 3 discusses the results in the context of existing models, and analyzes limit

equilibria when the state moves arbitrarily slowly. Section 4 extends the model to allow for

partial concessions. Section 5 presents the model with a multi-dimensional state. Section 6

concludes. All the proofs are found in Appendices A and B.

2 The Model

There are two players, 1 and 2. We �rst set up a discrete-time model with in�nite horizon:

t = 0, 1, . . . before taking the limit to continuous time.6

In each period, each player can choose to continue (C) or surrender (S). There is a state

of the world θt ∈ [−M,M ] which is common knowledge at all times. θt represents how

favorable the current conditions are to either player: a high θt favors 2, while a low θt favors

1. The initial θ0 is given by Nature. Then it evolves according to a Markov process described

by

P (θt+1 − θt ≤ x|θt) = Fθt(x),

where Fθ : R → [0, 1] is an absolutely continuous c.d.f. with corresponding density fθ.

We assume that, for some value of η > 0:

A1 fθ is continuous in θ for all θ ∈ [−M,M ]. More precisely, the mapping θ 7→ fθ is

continuous, taking the 1-norm in the codomain.

A2 Fθ is weakly FOSD-increasing in θ for all θ ∈ [−M + η,M − η]. In other words, if

θ, θ′ ∈ [−M + η,M − η] and θ ≥ θ′ then Fθ(x) ≤ Fθ′(x) for all x.

A3 For all θ ∈ [−M,M ], supp(fθ) is a closed interval with nonempty interior, contained

in [−η, η] ∩ [−M − θ,M − θ].

6The continuous time setting is more analytically tractable, but studying limits of discrete time equilibria
rather than working directly in continuous time helps to sidestep some technical issues.
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A1 says that small changes in θt induce small changes in θt+1, while A3 assumes that θt does

not change by more than ±η between periods, and always stays within [−M,M ]. The only

substantively important assumption is A2, which rules out mean-reverting processes. (It

does, of course, allow for random walks.) Substantively, A2 �ts settings where advantages

are persistent or even tend to snowball, as might be the case in wars, contests, etc., but it

excludes processes with transient or cyclical changes.7 Technically, the upshot of A2 is that

the prospect of θt going to extreme values has strategic bite. In contrast, if A2 were severely

violated (i.e., if Fθ were highly mean-reverting), even a substantial swing in θt may not

a�ect the strategic calculus much, as the players would expect the state to quickly �return

to normal�. However, our main results can hold even if A2 is slightly violated, as discussed

below.

Payo�s are as follows. In any period in which the war is ongoing, each player i pays a

�ow cost ci(θ). If either player chooses to surrender at time t, players do not pay �ow costs

in that period and the war ends. When the war ends, the winner receives an instantaneous

payo� Hi and the loser receives Li < Hi, normalized to 0.8 If both players surrender on the

same turn, they both lose.9 The players have a common discount factor δ ∈ [0, 1].10 Hence,

i's lifetime payo� if the war ends at time T is:

Ui(σi, σj) = δTHi1{i wins} −
T−1∑
t=0

δtci(θt).

We assume the following about the players' payo� functions:

B1 c1(θ) is strictly increasing in θ, and c2(θ) is strictly decreasing in θ.

B2 c1(θ), c2(θ) are C
1.

B3 There are M1, M2 such that −M < −M1 < 0 < M2 < M and c1(−M1) = c2(M2) = 0.

7However, in the multi-dimensional model presented in Section 5, the evolution of the state needs to be
mean-reinforcing only in one dimension; the rest can accommodate more general behavior.

8A player who receives Hi from winning, Li from surrendering and a �ow payo� −ci(θ) while the war
continues has identical incentives to one who receives Hi+ρ from winning, Li+ρ from losing and �ow payo�
−ci(θ) + ρ(1− δ) while the war continues.

9This assumption simpli�es some formal arguments but is not essential, as players never surrender simul-
taneously in equilibrium.

10δ = 1 does not lead to issues involving in�nite utility since it is never rational to continue the war forever.
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B4 The following inequalities are satis�ed:

c2(−M1)
M −M1 − η

η
> H2

c1(M2)
M −M2 − η

η
> H1.

B5 Hi >
−ci(θ)
1−δ for i = 1, 2 and all θ ∈ [−M,M ].

B6 δHi > c1(θ) + c2(θ) for i = 1, 2 and all θ ∈ [−M,M ].

Substantively, Assumption B1 says that player 1 is favored when θ is low, and vice versa.

Thus, changes in the state a�ect the players in opposite ways. (The extension in Section

5 allows a multidimensional state that can a�ect payo�s in richer ways.) B3 says that, for

favorable enough values of θ, players actively enjoy �ghting. B4 guarantees that, when the

state is so favorable to one player that she will be in favor of �ghting for a long time, it is

best for the other player to surrender. B5 says that players never enjoy �ghting so much

that they would rather continue �ghting than win immediately. Finally, B6 guarantees that

�ow costs are low enough that at least one player is always willing to continue if the war is

expected to end in the next period.

Out of these assumptions, B3 is the least innocuous and hence worth discussing. In some

contexts, it is reasonable that a player facing a favorable state of the world would obtain

positive net �ow payo�s from continuing the war, relative to surrendering. For example,

in a price war between two duopolists, Assumption B3 re�ects that, when a �rm has high

enough market share, it can turn a pro�t even before the other �rm exits the market. In

a dispute between a �rm and an activist group, in which θ represents the state of public

opinion, the �rm's pro�ts might increase if public opinion turns against the activist group,

in which case the boycott turns into free publicity for the �rm; conversely, if public opinion

turns against the �rm, activists may obtain (possibly non-pecuniary) payo�s from hurting

the �rm's bottom line, or from increased funding or exposure for their other causes.

In other examples�for instance, if the game represents the siege of a city by an attacking

army�Assumption B3 is less plausible. However, we would obtain much the same results by

assuming that, if the state of the world becomes extreme enough�formally, if θt goes above

(below) some threshold�then the war is over in a material sense and player 1 (2) is forced

to surrender, for instance, due to bankruptcy or death.

Our equilibrium concept is Subgame Perfect Equilibrium (SPE). In general, we denote a

strategy for player i by ψi, where ψi(h) is the probability that i continues at history h. If ψ1

is such that player 1 continues i� θ(h) ≤ θ∗, we say ψ1 is a threshold strategy with threshold
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θ∗. Similarly, if ψ2 is such that player 2 continues i� θ(h) ≥ θ∗, ψ2 is a threshold strategy

with threshold θ∗.

Analysis

Our �rst main result characterizes the unique subgame perfect equilibrium (SPE) of the

game.

Proposition 1. There is an essentially11 unique SPE. The equilibrium is in threshold strate-

gies: there are θ∗ < θ∗ such that player 1 surrenders whenever θt > θ∗, player 2 surrenders

whenever θt < θ∗, and neither player surrenders when θt ∈ (θ∗, θ
∗).

The equilibrium partitions the set of possible states [−M,M ] into three intervals: player

2's surrender region, [−M, θ∗); player 1's surrender region, (θ
∗,M ]; and between them the

disputed region, [θ∗, θ
∗], in which both players choose to continue the war.

Note that, while the unique equilibrium is in threshold strategies, there is no restric-

tion in our de�nition of strategies or equilibria to threshold, or even Markovian, strategies.

Proposition 1 thus makes two claims: �rst, among threshold strategy pro�les, there is one

(and essentially only one) SPE; and second, there are no additional equilibria involving

non-threshold or non-Markovian strategies.

The intuition for each claim is as follows. First, suppose the players use threshold strate-

gies. Let Ti(x) be i's optimal threshold when player j uses threshold x. (It is not hard to

show that the best response to a threshold strategy is another threshold strategy.) Then we

show that the mappings T1, T2 are contractions. To see why T1 is a contraction, suppose

that player 1's best response to a threshold θ∗ is a threshold θ∗ and her best response to a

threshold θ∗ + ε is a threshold θ′ ≥ θ∗ + ε, where ε > 0. It can be shown that players must

be indi�erent at their thresholds, so equivalently, player 1 is indi�erent about surrendering

in state θ∗ when facing threshold θ∗, and weakly prefers to continue in state θ∗ + ε when

facing threshold θ∗ + ε.

If we compare the resulting disputed regions in both scenarios, namely [θ∗, θ
∗] and [θ∗ +

ε, θ′], there is a clear contradiction. Indeed, in the latter scenario, player 1's payo� from

continuing the war when at her threshold is worse for three reasons. First, since the new

disputed region is made up of higher states, her �ow costs over the course of the war are

expected to be higher (Assumption B1). Second, because the stochastic process governing

(θt)t is not mean-reverting (Assumption A2), in the new disputed region, the drift of the

11There is equilibrium multiplicity in the sense that players are indi�erent at their thresholds, but as long
as θ0 /∈ {θ∗, θ∗}, all equilibria yield the same outcome almost surely, since the probability that θt will ever
equal θ∗ or θ∗ exactly is zero.
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state θt is weakly less favorable to her. Third, if θ′ > θ∗ + ε, the disputed region is larger, so

it will take longer on average for the state to travel to player 2's surrender region.

If T1 and T2 are contractions, so is T1 ◦ T2. Player 1's equilibrium threshold θ∗ is then

uniquely pinned down as it must be the �xed point of T1 ◦ T2. The same logic pins down θ∗.

To rule out other equilibria beyond threshold strategies, we use standard tools from

supermodular games. We note that, if θ is very low, then player 1 never has an incentive

to surrender: even if she expects to eventually lose, she should stay in the war until θ goes

above −M1 (i.e., until her costs become positive). Then, since the gap between −M1 and

−M is large (Assumption B4), there will be low enough values of θ for which player 2 is

forced to surrender immediately, since waiting for player 1 to surrender will be too costly.

Similarly, for very high values θ, player 2 will never want to surrender, so player 1 must

concede immediately.

For values of θ between these extremes, incentives depend on the other player's strategy

in a particular way: for instance, if 2 plays a �hawkish� strategy in equilibrium�that is,

she surrenders at very few histories�this incentivizes 1 to play a �dovish� strategy, which

surrenders at a large set of histories, and vice versa. Formally, the game is supermodular, if

we order the strategy sets so that surrender is the �high� action for player 1 and the �low�

action for player 2. Hence, as is standard in supermodular games, there is a greatest and a

smallest equilibrium that all other equilibria are bounded between (Milgrom and Roberts,

1990). Because the best response to a threshold strategy is another threshold strategy,

and the greatest and the smallest equilibrium can be obtained as iterated best responses

to extremal pro�les (where one player always surrenders and the other never does), both

extremal equilibria are themselves in threshold strategies. But then the extremal equilibria

must coincide, as they must both equal the only equilibrium in threshold strategies.

From this discussion, it also follows that Assumptions A2 and B1 are jointly �tight� in

the following sense: suppose that the ci(θ) and Fθ are all constant in θ over some open

interval I ⊆ [−M,M ], so that A2 is satis�ed, and B1 is violated only slightly (i.e., there

are cost functions arbitrarily close to the ci which satisfy B1). Then, for any θ ∈ I such

that Ti(θ) ∈ I, T ′
i (θ) = 1. In addition, T1(θ), T2(θ) ∈ I for any θ ∈ I if we take H to be

small enough. Hence, if H is small enough, then (T1 ◦ T2)′(θ) = 1 over some interval, which

allows for multiple �xed points and hence multiple (indeed a continuum of) equilibria.12

Thus we cannot relax B1 any further and still guarantee that Proposition 1 will hold, unless

we tighten A2. Conversely, we can relax A2 only if we tighten B1.

We can interpret the thresholds θ∗, θ
∗ as parameterizing two features of the equilibrium.

12By analogous arguments, uniqueness is recovered if we require the ci to be only weakly monotonic but
require Fθ to be strictly FOSD-increasing.
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The size of the disputed region, θ∗−θ∗, re�ects how willing the players are to �ght to increase

their odds of winning the war. The position of the disputed region, [θ∗, θ
∗] within the interval

[−M,M ] re�ects any asymmetries between the players. For example, if f and the �ow costs

are symmetric then θ∗ + θ∗ = 0, while if θt tends to drift to the right, or c1(θ) > c2(−θ)
(player 1 has higher costs), then θ∗ + θ∗ < 0, and so on.

Our next result characterizes the comparative statics of the model with respect to the

prizes, the cost functions, and the stochastic process described by (Fθ)θ∈[−M,M ]. For cost

functions, we say ci is increased (decreased) if we replace ci with a new cost function ĉi

such that ĉi(θ) > ci(θ) (<) for all θ. For Fθ we apply the FOSD order: (weakly) increasing

Fθ means replacing Fθ with F̂θ such that F̂θ(x) ≤ Fθ(x) for all x ∈ R, i.e., such that the

distribution induced by F̂θ �rst-order stochastically dominates that of Fθ. Intuitively, this

makes it so a greater rightward shift θt+1 − θt is expected when the current state is θt = θ.

Proposition 2.

(i) Increases in H1 and decreases in c1 raise θ∗, θ
∗ and θ∗ − θ∗. Increases in H2 and

decreases in c2 lower θ∗ and θ∗ but raise θ∗ − θ∗.

(ii) A weak increase in Fθ for all θ weakly lowers θ∗ and θ∗.

Part (i) of Proposition 2 says that, if a player's prize from winning increases or her cost

decreases, her surrender region shrinks, her opponent's surrender region expands, and the

size of the disputed region expands. The logic is as follows: if H1 goes up, for instance,

this directly increases player 1's incentive to continue �ghting, taking as �xed all the other

parameters as well as player 2's strategy. Then player 1 shrinks her surrender region, which

induces player 2 to expand her own. This incentivizes player 1 to shrink her surrender region

further, and so on. Iterating this argument brings us to the new equilibrium thresholds. The

new disputed region is made up of higher states�that is, states preferred by player 2. In

order to leave player 2 indi�erent at her new threshold�despite her now �ghting over more

favorable states�the size of the disputed region, θ∗ − θ∗, must grow.

Part (ii) says that a similar logic applies to changes in the drift of the stochastic process

(θt)t: making the evolution of the state more favorable to one player shrinks her surrender

region and expands her opponent's.

The results in Proposition 2 can be translated into statements about changes in the

players' winning probabilities and winning times. Formally, let Pi(t) be the probability that

player i will win by time t. Then Proposition 2 implies that, if Hi increases, then Pi(t)

increases for all t and Pj(t) decreases for all t. Analogous statements hold for changes in ci

or Fθ.
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Continuous Time Model

For much of the rest of the paper, we will study a special case of our model, in which taking

the limit to continuous time is feasible and yields sharper results.

Assume that the underlying time index t is continuous, but that the players only make

decisions at a discrete sequence of times: t ∈ {0,∆, 2∆, . . .}. Let δ = e−γ be the discount

factor over a unit of real time and e−γ∆ be the discount factor between consecutive decision

times k∆, (k + 1)∆. Suppose that the state θt evolves according to a drift-di�usion process

with re�ecting boundaries at −M and M , given by the expression

dθ = µ(θ)dt+ σdBt,

where (Bt)t is a Brownian motion, σ > 0 is �xed, and µ(θ) is continuous (A1) and weakly

increasing in θ (A2).13 We can assume that costs ci(θt) also accrue continuously, and let

c̃i(θt) = E
[� t+∆

t
e−γ(τ−t)ci(θτ )dτ |θt

]
be the expected cost between t and t+∆ based on the

interim evolution of the state.

Clearly, Propositions 1 and 2 apply for any value of ∆ > 0. As we take the limit ∆ → 0,

we converge to a continuous-time version of the model in which the players can surrender at

any moment t ∈ [0,+∞); they discount the future at a common rate γ ≥ 0; and, while the

war continues, they pay �ow costs ci(θt) (i = 1, 2) satisfying Assumptions B1-5.14

Denote the best-response threshold functions from the previous section by T∆
i , highlight-

ing the dependence on the time ∆ between decisions. For any x, T∆
i (x) converges as ∆ → 0

to a limit T 0
i (x), i's optimal threshold in response to an opponent's threshold of x in the

continuous-time game. And T 0
1 , T

0
2 can be shown to be contractions using similar arguments.

The limit equilibrium is then simply the �xed point of T 0
1 ◦T 0

2 . For simplicity, we will denote

the equilibrium disputed region in the continuous time setting simply as [θ∗, θ
∗]. By our

preceding arguments, θ∆∗ → θ∗ and θ
∗∆ → θ∗ as ∆ → 0. Our next result provides an explicit

characterization of the equilibrium thresholds, expected payo�s, and winning probabilities

for both players in continuous time.

13To guarantee A2 for low values of ∆, we require µ(θ) to be weakly increasing and σ(θ) to be constant.
This is due to the nature of normal noise. If σ(θ1) > σ(θ0) for two states θ1 > θ0, then the distribution
of marginal changes starting from θ1 will not FOSD-dominate the other due to a fat left tail. Similarly, if
σ(θ1) < σ(θ0), it will not FOSD-dominate due to a thin right tail. However, these restrictions can be relaxed

by a change-of-variables argument: if µ(θ) and σ(θ) are such that µ(θ)
σ(θ) −

σ′(θ)
2 is weakly increasing in θ, then,

setting h(θ) =
� θ

0
1

σ(θ̃)
dθ̃, ηt = h(θt) has increasing drift and constant variance, as required.

14Assumption B4 must be restated as requiring that M be large enough that player 1's payo� from
continuing the war starting at state M is negative, even when player 2 surrenders at all states θ ≤M2, and
analogously for player 2. Also, Assumption B6 becomes vacuously true in continuous time.

12



Figure 1: Equilibrium utility and win prob.: Hi = 2, c1(θ) = 5 + θ, c2(θ) = 5− θ, σ2 = 1, M = 15
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(b) µ(θ) ≡ 0.0625

Proposition 3. The unique equilibrium of the game with periods t = 0,∆, 2∆, . . . converges

as ∆ → 0 to an equilibrium of the continuous-time war of attrition. In it, the players use

threshold strategies with thresholds θ∗ < θ∗ such that each player's expected utility Vi(θ),

conditional on an initial state θ, solves the following ODE:

ci(θ) + γVi(θ) = µ(θ)V ′
i (θ) +

σ2

2
V ′′
i (θ) (1)

given the boundary conditions V1(θ∗) = H1, V1(θ
∗) = 0; V2(θ∗) = 0, V2(θ

∗) = H2; and the

smooth-pasting conditions V ′
1(θ

∗) = 0, V ′
2(θ∗) = 0.

The players' winning probability Pi(θ) solves the ODE:

0 = µ(θ)P ′
i (θ) +

σ2

2
P ′′
i (θ) (2)

with boundary conditions P1(θ∗) = 1, P1(θ
∗) = 0; P2(θ∗) = 0, P2(θ

∗) = 1.

Equations 1 and 2 are obtained by combining the Hamilton-Jacobi-Bellman equation

of each player's optimization problem with Itô's Lemma. In fact, any threshold strategy

pro�le with thresholds θ < θ induce value functions that solve Equation 1 with the boundary

conditions V1(θ) = H1, V1(θ) = 0; V2(θ) = 0, V2(θ) = H2. It is the smooth-pasting conditions

V ′
1(θ

∗) = 0, V ′
2(θ∗) = 0 which serve to uniquely pin down the equilibrium thresholds θ∗, θ

∗.

Figure 1 illustrates the expected utility and winning probabilities of the two players as

a function of the initial value of θ when the stochastic process is symmetric (µ ≡ 0, Figure

1a) and when it is asymmetric (µ > 0, Figure 1b). In both examples, the cost functions are

taken to be symmetric around 0. As expected, the thresholds and utilities in Figure 1a are

13



symmetric around 0, and the winning probabilities Pi(θ) are linear in θ. On the other hand,

in Figure 1b, θ tends to drift up over time, favoring player 2, and both players' thresholds

are lower as a result.

The following Proposition shows that the comparative statics from Proposition 2 extend

to the continuous time model (parts i and ii) and can be strengthened (part iii).

Proposition 4.

(i) Increases in H1 and decreases in c1 raise θ∗, θ
∗ and θ∗ − θ∗. Increases in H2 and

decreases in c2 lower θ∗ and θ∗ but raise θ∗ − θ∗.

(ii) An increase in µ lowers θ∗ and θ∗.

(iii) If H1 and H2 are increased proportionally, and µ(θ) ≥ 0 for all θ, then θ∗ decreases.

Similarly, if µ(θ) ≤ 0 for all θ, then θ∗ increases. If µ(θ) ≡ 0, then θ∗ decreases and

θ∗ increases.

Substantively, part (iii) of Proposition 4 states that, if both players' incentives to �ght

increase in the same proportion, the disputed region expands not just in the sense of θ∗ − θ∗

growing�as stated in part (i)�but in the stronger sense that θ∗ decreases while θ
∗ increases.

The intuition is as follows. Suppose that, after increasing H1 and H2 proportionally, we are

left in equilibrium with a new disputed region of the form [θ∗, θ
∗ + ∆] for some ∆ > 0,

i.e., only player 1's threshold changes (the same argument applies if both thresholds move

strictly in the same direction). Then all the states added to the disputed region are states in

which player 2's costs are lower than player 1's, relative to the states in the original disputed

region. Hence, if player 1 is indi�erent at θ∗+∆, player 2 must be strictly willing to continue

the war at θ∗. The reason this result can only be proved in the continuous time setting is

that the proof relies on the continuity of θt as a function of time�which guarantees that, in

moving from one state to another, the path (θt)t passes through every state between them.

The intuition in the previous paragraph applies when the process has no drift (µ ≡ 0).

If we instead have µ ≥ 0, i.e., the drift in θt favors player 2, a proportional increase in

both players' prizes may either induce both thresholds to move away from each other, or it

may induce both thresholds to move to the left, but they cannot both move to the right.

The reason is that the player who faces a favorable drift has an intrinsic advantage that is

ampli�ed in longer wars. Thus, if prizes increase, the disputed region grows (part i), and

this strengthens the position of player 2.

Finally, it is worth noting that, while Equations 1 and 2 do not have closed-form solutions

in general, they simplify greatly if µ ≡ 0 and γ = 0, i.e., when θt follows a Brownian motion

14



with no drift and there is no discounting. In that case, Equations 1 and 2 reduce to:

V1(θ) =
2

σ2

� θ∗

θ

(λ− θ)c1(λ)dλ P1(θ) =
θ∗ − θ

θ∗ − θ∗
(3)

V2(θ) =
2

σ2

� θ

θ∗

(θ − λ)c2(λ)dλ P2(θ) =
θ − θ∗
θ∗0 − θ∗

, (4)

plus the conditions V1(θ∗) = H1, V2(θ
∗) = H2.

3 Discussion

Equilibrium Selection Under Slow-Moving θt

The baseline model, with its time-varying state of the world θt, captures con�icts in which

the players' strengths and weaknesses change meaningfully over time. However, the model

can also be taken as a tool for equilibrium selection when the �true� model the researcher is

interested in is the classic war of attrition. The relevant objects of study for this purpose

are the limits of sequences of equilibria as the movement of θ becomes arbitrarily slow.

In continuous time, such a limit can be taken as follows. Given a drift-di�usion process

θt with parameters (µ(θ), σ), assume for any given ν > 0 that the players instead face the

stochastic process θ̃t ≡ θνt, which represents a �slowed down� version of the original process

for ν < 1. Note that θ̃t has parameters µ̃(θ) ≡ νµ(θ), σ̃ ≡ √
νσ.

Denoting the equilibrium thresholds as a function of ν by θ∗(ν), θ
∗(ν), we are interested in

the limit ν → 0. Of course, the game obtained when ν = 0 is the classic war of attrition with

�ow costs c1(θ0), c2(θ0), but taking the limit of the equilibrium disputed region [θ∗(ν), θ
∗(ν)]

as ν → 0 selects a particular equilibrium of the classic war of attrition, described next.

Proposition 5. Suppose H1 = H2 = H.15 Then, as ν → 0, θ∗(ν), θ
∗(ν) → θl, where θl is

given by the condition c1(θ
l) = c2(θ

l) =: c∗. Furthermore, as ν → 0, we have

V1

(
θ∗(ν) + θ∗(ν)

2

)
, V2

(
θ∗(ν) + θ∗(ν)

2

)
−→ H

X + 1
X
+ 2

,

where X =

√
γH
c∗

+ 1 +

√(
γH
c∗

+ 1
)2 − 1.

Here is an explanation of this result. As ν → 0, the disputed region must shrink to

keep the expected length of the war from growing without bound. Furthermore, if there

15This normalization serves purely to simplify the notation.
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is no drift�that is, if µ(θ) ≡ 0�then the players' cost functions must intersect inside the

disputed region: otherwise one would always have higher costs than the other, and it would

be impossible for both players' indi�erence conditions at their thresholds to be met. It turns

out that the disputed region converges to this same point of intersection θl even when µ ̸= 0,

because as the stochastic process slows down, drift matters less and less. Indeed, the drift

of the process still dominates its long run behavior, but the players must now quit after

observing only some initial, local variation around θ0 that is less responsive to drift.

It follows that, if the initial state θ0 is below θl, then the selected outcome in the classic

war of attrition is that player 2 immediately surrenders. Similarly, if θ0 > θl, player 1

immediately surrenders.

A di�erent outcome arises when θ0 ≈ θl, i.e., when the players have equal prize-cost

ratios. In this case, neither player surrenders immediately and both can win. Proposition

5 characterizes the players' welfare in this limit for an initial state in the middle of the

disputed region: a signi�cant fraction of total welfare is destroyed by �ghting and delay, but

not all. Indeed, when H
c
is small (i.e., the prize is small, so the players end the war quickly)

or γ is small (players are patient, so delay does not in itself degrade the prize), X ≈ 1, so

V1, V2 ≈ H
4
, and V1 + V2 ≈ H

2
. In other words, total welfare is half of the �rst-best (no

�ghting). In general, X > 1 and V1, V2 are below
H
4
, but still positive.

One implication of this result is that, as ν → 0, this limit equilibrium is not equivalent

to the totally mixed symmetric equilibrium of the classic war of attrition, as that equilib-

rium leaves both players with zero rents. In fact, the limit equilibrium is not even a Nash

equilibrium of the classic war of attrition; it is an equilibrium of the war of attrition with a

public coordination device.

It is worth noting that one could take the limit to the unperturbed war of attrition in

other ways. Proposition 5 in fact extends as ν → 0 to any sequence of games with parameters

of the form (νµ(θ), z(ν)σ), for any function z that goes to zero sub-linearly. But, for example,

parameter sequences of the form (νµ(θ), νσ)16 lead to di�erent limit equilibria when µ ̸= 0.

For instance, the equilibrium for parameters (νµ(θ), νσ) with µ(θ) ≡ A θ−θl√
1
A
+(θ−θl)2

(A > 0)

converges as ν → 0 to a limit equilibrium with less �ghting than in Proposition 5, since

any movement above or below θl is more likely to become decisive; for A large enough, this

limit equilibrium approximates a �coin toss� equilibrium in which the players end the war

arbitrarily quickly.

Even such limit equilibria outside the scope of Proposition 5 preserve two important

properties. First, they still make meaningful use of the θt as a public coordination device,

16This corresponds to the modi�ed process θ̂t ≡ θ0 + ν(θt − θ0)�i.e., shrinking deviations from θ0 by a
factor ν relative to the original process, rather than assuming the process is realized more slowly.
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even as it becomes payo�-irrelevant in the limit. Second, they are in pure strategies and

yield positive payo�s for both players, at least for some initial states. Indeed, as the coin

toss example indicates, they can yield higher welfare than the limit equilibria characterized

in Proposition 5.

Alternative Models

This Section discusses the predictions of the model relative to those made by other variants

of the war of attrition found in the literature. We begin with the classic war of attrition.

As discussed above, the classic war of attrition is nested in our model when µ ≡ σ ≡ 0,

i.e., θ is constant. (Or, we can take c1(θ) ≡ c1 and c2(θ) ≡ c2 to be �at.) For simplicity we

normalize H1 = H2 = H.

It is known (Hendricks et al., 1988) that this game has a continuum of subgame perfect

equilibria. In every equilibrium, at all times t > 0, each player i surrenders at a rate
cj
H
. The

equilibria di�er at t = 0. For each p ∈ [0, 1] and each player i, there is an equilibrium in which

i surrenders with probability p at t = 0, while j does not surrender at t = 0. In particular,

there is an equilibrium in which player 1 surrenders immediately; another in which player 2

surrenders immediately; and a mixed strategy equilibrium with no instantaneous concession.

In the latter, both players' expected payo�s are 0, and i's probability of winning is ci
ci+cj

.17

In every equilibrium, at least one player has an expected payo� of 0.

The results in this paper di�er from the above in several ways. The model in this paper

has a unique equilibrium, which is in pure strategies. Assuming an initial state in the

disputed region, this equilibrium gives both players a positive expected payo�, even when

payo� perturbations are small (Proposition 5), which is impossible in the classic model.

As for expected delay, the classic war of attrition admits equilibria with any expected delay

between zero and the maximum (i.e., enough to completely evaporate the value of the prize).

The model in this paper predicts an amount of delay strictly between these extremes.

The two models also predict delay distributions with di�erent shapes. In the classic

model, the surrender rate is constant, and there may be immediate surrender. Hence the

density h(t) of the length of the war is exponentially decreasing in t, with a possible spike

at t = 0 (Figure 2a). In contrast, in this paper's model, there is no immediate surrender.

Indeed, in the discrete time version, the length of the war is bounded away from zero, as the

war can only end at times t ≥ min(θ∗−θ0,θ0−θ∗)
η

> 0. In continuous time, θt−θ0 has full support
for all t > 0, but, as shown in Figure 2b, h(t) → 0 as t → 0, as it typically takes some time

for θ to hit either surrender threshold. Thus, the distribution of delay is hump-shaped over

17Strangely, in this equilibrium, a player's winning probability increases with her own cost.
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time. This di�erence may be used to distinguish between the two models empirically.

Figure 2: Density of length of the war
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(b) Evolving war of attrition

These di�erences in results arise for two related reasons. First, that the equilibrium

of our game is in pure strategies follows from a general property of supermodular games

whereby extremal equilibria are in pure strategies (see, e.g., Milgrom and Roberts 1990).

Incidentally, the classic war of attrition is also supermodular, but its extremal equilibria are

the trivial ones in which one player surrenders immediately and the other one never does;

it is the intermediate equilibria between them that involve mixing. Second, as discussed in

the previous subsection, equilibria of the evolving war of attrition converge to equilibria of a

version of the unperturbed war augmented with a time-varying public coordination device.

Indeed, the classic war of attrition, imbued with such a coordination device, would have a

very large set of equilibria, nesting both the equilibria that do not use public coordination

(Hendricks et al., 1988), as well as all possible limits of equilibria of our game and others

still. What is interesting is that equilibria of our game can converge only to a subset of

these, and indeed only to equilibria that meaningfully use the coordination device, even as

it becomes payo�-irrelevant in the limit.

Next, consider the war of attrition with reputational concerns. The simplest version

(Abreu and Gul, 2000) is identical to the classic war of attrition, except that each player

i has a probability ϵi of being a commitment type that never surrenders. The game has a

unique equilibrium, which is observationally equivalent to one of the equilibria of the classic

war of attrition described above (up to the point where only comitment types are left). The

innovation is that the probability of immediate surrender (and who surrenders) are uniquely

determined by the ϵi. Much of the comparison made above with the classic war of attrition
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thus extends to the Abreu and Gul (2000) setting: indeed, in Abreu and Gul (2000), (the

rational types of) at least one player must have an expected payo� of 0, and the distribution

of delay must have exponential density with a spike at t = 0, unlike in this paper.

In other variants of the reputational war of attrition (e.g., Fudenberg and Tirole (1986)),

each player has a continuum of possible �ow costs. If each player has a positive mass of nega-

tive cost types�who never surrender�the game has a unique equilibrium, featuring smooth

screening of the types with positive costs, possibly preceded by the immediate surrender of

some types of one player. In such a model, (most) types of each player have positive expected

payo�s, but the distribution of delay di�ers from our model's. Indeed, in Fudenberg and

Tirole (1986), both players have a positive surrender rate at all times t > 0, much like in

Abreu and Gul (2000). Moreover, if we �take the perturbation to zero� (i.e., we collapse the

distribution of each player's �ow costs towards a mass at c), the ex ante payo� of at least

one player goes to zero, again as in Abreu and Gul (2000), because the equilibrium converges

to an equilibrium of the classic war of attrition. What sets our model apart is thus that we

do not select an equilibrium of the classic war of attrition, even in the limit.

Finally, we can compare our setting to Gul and Pesendorfer (2012)'s war of information.

Their baseline model is equivalent to a special (limiting)18 case of our continuous time model

with the following parameters: c1(θ) = k11θ>0, c2(θ) = k21θ<0, γ = 0, σ(θ) ≡ 1 and

µ(θ) = −1
2
+ 1

1+e−θ .
19 They then extend their results to allow for γ > 0, and separately for a

speci�c form of variable costs: c1(θ) = k1θ1θ>0, c2(θ) = −k2θ1θ<0 (with γ = 0). They provide

a result analogous to Proposition 1. While their arguments regarding supermodularity and

extremal equilibria in threshold strategies are analogous to the ones given here, their proof

that T1 ◦ T2 is a contraction, as required to show uniqueness, relies on explicitly calculating

the players' utilities from an arbitrary strategy pro�le, and from there deriving explicit

expressions for (T1 ◦ T2)′ which are shown by hand to be less than 1 in each case they

study. This approach does not generalize well to general cost and drift functions. Our

argument shows that (T1◦T2)′ is a contraction under much less restrictive conditions, and for

transparent reasons. They also consider a limit of their game as news become uninformative

(see their Proposition 2); their model, however, does not converge to the classic war of

attrition in this limit, as they retain the assumption of discontinuous cost functions (in

particular, only one player pays a �ow cost at each state). This distinguishes their results

from our Proposition 5.

18The cost functions violate Assumption B1, but our results go through as µθ is strictly increasing; see
footnote 12.

19This equivalence is obtained by setting θt = ln
(

pt

1−pt

)
, where pt is the probability that party 1 is better

given the information revealed at time t, as de�ned in their paper.
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4 Partial Concessions

In the baseline model, as in the classic war of attrition, the players only have two choices

at each moment: continue or surrender completely. In other words, they can control the

duration of the war, but not its intensity. To illustrate what is being ruled out, take the

example of a polluting �rm being boycotted by an activist group. In the baseline model,

the war ends when the �rm capitulates to all the demands or the activists abandon the

boycott; there is no room for an intermediate solution. However, in practice the �rm may

have access to a range of policies it can implement to lower its own pollution. It may prefer

to announce a partial concession, in the form of a unilateral commitment to a certain level of

self-regulation. Such an announcement may de�ate the boycott's momentum even if it does

not fully meet the activists' demands. A similar logic applies, e.g., to a government facing

protests.

This Section introduces an extension of the model that allows for partial concessions. In

other words, it allows for surrender at both the intensive and extensive margins. To illustrate

the relevant forces as simply as possible, we will focus on the case where only one player has

the ability to make concessions. Such a restriction is reasonable when modeling collective

action: for a boycott or protest movement, announcing that they will give up on one of their

demands may be mechanically or reputationally di�cult. It is also appropriate, for instance,

in a siege: while a besieged city may o�er some tribute to an attacking army to encourage

it to leave, the army cannot credibly commit to leaving after the tribute has been received,

or even to not fully destroying the city if the gates are later opened.

The general insight that emerges is that unilateral concessions can resolve con�ict, and

can also be to the conceder's advantage, but are useful only when the prize is composed

of heterogeneous parts that are unequally valued by the two players. To accommodate this

possibility, we represent the prize as an interval [0, 1], where vi(x) is the value that i assigns

to part x of the prize. We assume that v1 is weakly decreasing in x, v2 is weakly increasing

in x, and denote H1 =
� 1

0
v1(x)dx, H2 =

� 1

0
v2(x)dx.

20

Formally, we begin by considering the following game. At t = 0, player 1 can choose

a cuto� x∗ and unilaterally give up everything to the right of x∗, so that player 2 collects

a payo�
� 1

x∗
v2(x)dx immediately.21 Afterwards, further concessions are not possible, and a

war of attrition is played over the remaining prize [0, x∗).

We assume an especially tractable speci�cation of the war of attrition: we assume as in

20A simpler speci�cation might be that, if the prize is split into shares (x, 1 − x), the players get xH1,
(1− x)H2. This is the case of a homogeneous prize, in which, as we will see, concessions are not useful.

21It would be worse for player 1 to concede a set not of the form [x∗, 1], if this were allowed.

20



Proposition 3 that, after the concession stage, time is continuous,22 and in addition µ ≡ 0

and γ = 0, i.e., θt follows a Brownian motion with no drift and there is no discounting.

The continuation game is thus identical to that from Proposition 3, but with prizes H̃1 =� x∗
0
v1(x)dx, H̃2 =

� x∗
0
v2(x)dx.

We denote the equilibrium disputed region in this continuation by [θ∗(x
∗), θ∗(x∗)]. From

applying Equations 3 and 4, we know that these thresholds uniquely solve the following

system:

H̃1 =

� x∗

0

v1(x)dx = V1(θ∗(x
∗)) =

2

σ2

� θ∗(x∗)

θ∗(x∗)

(λ− θ∗(x
∗))c1(λ)dλ (5)

H̃2 =

� x∗

0

v2(x)dx = V2(θ
∗(x∗)) =

2

σ2

� θ∗(x∗)

θ∗(x∗)

(θ∗(x∗)− λ)c2(λ)dλ. (6)

The model we have set up makes two strong assumptions. First, concessions can only be

made at the beginning of the game. Second, concessions are unilateral, meaning that the

receiver cannot refuse them, even if the resulting equilibrium gives her a lower payo� than

she would get in the baseline model with no concessions. We discuss the possibility of later

concessions, as well as concessions that the receiver can veto, after the main results.

The following Proposition provides a characterization of equilibrium.

Proposition 6. An equilibrium exists. In any equilibrium, player 1 chooses a value of x∗

that solves:

maxx∈[0,1]θ
∗(x) subject to θ∗(x) ≤ θ0.

If this maximization problem has a unique solution, then the equilibrium is essentially unique.

In other words, player 1 makes the concession that makes her most aggressive in the

continuation, by maximizing her own surrender threshold θ∗(x)�with the caveat that it is

never useful to strictly induce player 2 to surrender immediately. To see why, note that, if

player 1's concession does not induce immediate surrender by her opponent (that is, θ∗(x
∗) ≤

θ0 ≤ θ∗(x∗)), then her value function over [θ0, θ
∗(x∗)] can be calculated by solving Equation

1 leftwards from θ∗(x∗), with the initial conditions given by smooth-pasting. As the solution

is increasing in the starting point θ∗(x∗), player 1 need only make θ∗(x∗) as high as possible.

An implication that is perhaps surprising is that, for any θ0 between θ∗(x
∗) and θ∗(x∗), the

optimal concession is independent of the initial state θ0.

We can provide a geometric description of the optimal concession x∗. For each possible

value of θ∗ ∈ [−M,M ], consider all pairs (H1, H2) that make 1's surrender threshold equal

22As in Proposition 3, the equilibria we characterize are limits of discrete time equilibria for ∆ → 0.
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to θ∗ per Proposition 3. In this way, partition the space of possible prize pairs (H1, H2) into

level curves, parameterized thus: H2(H1; θ
∗). The concession technology yields a feasible

path of prize pairs (H1(x), H2(x)) = (
� x
0
v1(x̃)dx̃,

� x
0
v2(x̃)dx̃). Player 1 then picks the prize

pair on the highest possible level curve, as illustrated in Figure 3.

H1

H2 θ∗1 θ∗2 θ∗3

H2(H1; θ
∗
3)

(H1(1), H2(1))

(H1(x
∗), H2(x

∗))

Figure 3: Level curves, feasible prize pairs, and optimal concession x∗

Remark 1. H2 is a convex function of H1 along all level curves, as well as along the feasible

path of prize pairs.

The convexity of the prize path is due to the shape of the functions vi, while the convexity

of the level curves follows from Proposition 4.(iii). If x∗ is interior (i.e., x∗ < 1 and it does

not induce immediate surrender), then the path of prize pairs must be tangent to the level

curve passing through x∗, so the slopes must be equal. From Equations 3�4, and since the

slope of the path of prize pairs is v2(x)
v1(x)

, we have

c2(θ∗(x
∗))� θ∗(x∗)

θ∗(x∗)
c1(λ)dλ

=
v2(x

∗)

v1(x∗)
. (7)

A derivation is given in the proof of Remark 1.

Our analysis yields sharp predictions in two special cases. First, suppose that the prize is

homogeneously valued by both players, that is, v1(x) and v2(x) are constant in x. Then the

path of feasible prize pairs is simply a line segment from (0, 0) to (H1, H2), and the highest

level curve is attained at x∗ = 1, i.e., by making no concession. The same result holds if

the vi are approximately constant. In other words, player 1 can only bene�t from making

concessions when the valuations of the conceded prize are lopsided enough that the gain

from undermining player 2's incentives to �ght over the remainder dominates the direct loss

from foregoing part of the prize. Second, suppose that v1(x) ≡ v1 > 0 is constant, while

v2(x) ≡ 0 for x ≤ x and v2(x) ≡ v2 > 0 for x > x. In other words, part of the prize is
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homogeneous, and part is valued only by player 1.23 In this case the relevant part of the

feasible path of prize pairs is a line segment from (xv1, 0) to (H1, H2). Since an interior

optimum is impossible, the optimal concession is either no concession at all or the minimal

concession that induces immediate surrender. However, in the general case, the optimal

concession may be positive while not immediately ending the war.

It is worth comparing these results to those of a standard bargaining setting. For instance,

if player 1 gets to make a single take-it-or-leave-it o�er, she would o�er [x̂, 1], where x̂ is

chosen to leave player 2 indi�erent about accepting, i.e.,
� 1

x̂
v2(x)dx = V2(θ0), and the war

would end immediately. (If there are alternating o�ers, a lower x̂ would be chosen that

splits the bargaining surplus more equally.) In contrast, the equilibrium concession x∗ in

our model does not necessarily end the war; it may be higher or lower than x̂; and it may

even leave player 2 worse o� than she is either in the bargaining setting or when concessions

are impossible. The reason is that unilateral concessions di�er from bargaining o�ers in two

ways. On the one hand, player 2 can always continue to �ght after a concession, i.e., there

is no chance of a quid pro quo, so player 1 may need to make a larger concession to deplete

player 2's incentives to �ght�or, if the e�ect on player 2's incentives is not strong enough,

she may concede nothing at all. Second, player 2 cannot veto a �stingy� concession (x∗ > x̂);

rather than refusing the o�er, her only recourse is to continue �ghting. To see how this may

bene�t player 1, suppose for instance that θt is slow-moving, as in Proposition 5, and θ0

is only slightly higher than θl. Then player 1 would lose immediately in the absence of a

concession, and so would have to give up the entire prize in bargaining; but, if the vi are

not �at, she can make herself the stronger player with a very small concession, after which

player 2 will be the one forced to surrender.

The assumption that concessions are unilateral is reasonable in the applications that

we discussed. For instance, an activist cannot prevent a �rm from adopting a half-hearted

level of self-regulation in response to a boycott. They can announce that such a concession

is not enough, that it is meaningless, etc., but this is cheap talk; the e�ect on payo�s

remains. However, in other settings, player 2 may get to veto an o�ered concession that is

strategically damaging. For example, in January 2024, Senate Republicans backed out of a

bill restricting immigration that was o�ered as a concession by Democrats in exchange for

Ukraine funding, because Trump wanted to keep immigration active as a campaign issue for

the 2024 election.24 (While a presidential election is not a war of attrition, it is a type of

race (Harris and Vickers, 1987), and thus closely related.)

23For instance, if player 1 is a city under siege, both players may value the city's wealth, but only the city
values the lives of its citizens.

24https://www.cnn.com/2024/01/25/politics/gop-senators-angry-trump-immigration-deal/

index.html

23

https://www.cnn.com/2024/01/25/politics/gop-senators-angry-trump-immigration-deal/index.html
https://www.cnn.com/2024/01/25/politics/gop-senators-angry-trump-immigration-deal/index.html


The possibility of a veto by player 2 restricts player 1's set of feasible concessions to all

x ∈ [0, 1] such that V2(θ0; H̃1(x), H̃2(x)) +
� 1

x
v2(y)dy ≥ V2(θ0;H1, H2). From this restricted

(closed) set, player 1 will still choose either the lowest element inducing immediate surrender

or the one maximizing θ∗(x). If the unrestricted optimum from Proposition 6 is incentive-

compatible for player 2, then the solution is unchanged and the veto has no bite. When the

veto has bite, player 1's equilibrium concession may grow or shrink relative to Proposition

6. Moreover, using Equation 1, it can be shown that V2(θ0;H1, H2) − V2(θ0; H̃1(x), H̃2(x))

is increasing in θ0, i.e., the stronger player 2's initial position, the higher the strategic cost

of allowing a concession. In particular, when player 2 would almost certainly lose absent

concessions, almost any concession is acceptable, while when he would likely win absent

concessions, any attempted concession gets rejected. Player 1's o�er must then condition

more carefully on θ0.

Finally, we consider the case when player 1 can make concessions at any time, including

multiple concessions over time. To avert some technical issues, we assume that the prize can

only be divided into a �nite number of pieces, i.e., there is a sequence 0 = x0 < x1 < . . . <

xk = 1 such that only concession thresholds x = xi are feasible, with x
∗ = xi for some i; and

player 1 can concede from �ghting over [0, xj) to �ghting over [0, xl) for any l < j at any

time t, while player 2 can only continue or surrender. Then we have the following result:

Proposition 7. Let x∗ := argmaxx∈[0,1] θ
∗(x) be the global maximizer of θ∗(x), and suppose

it is unique. Furthermore, assume θ∗(x
∗) < θ0. Then the equilibrium outcome in Proposition

6 is also the outcome for an equilibrium of the game in which player 1 can make concessions

at any time. Moreover, player 1 cannot obtain a higher payo� in any threshold strategy

equilibrium.

Intuitively, the timing of concessions makes no di�erence because there is no discount-

ing, and the optimal concession is largely independent of the current state, so there is little

temptation to adjust it as the war progresses. However, equilibria in which player 1's equi-

librium payo� is strictly lower than when concessions are restricted to t = 0 can exist. The

logic is as follows: when all concessions by player 1 weaken her position, she chooses to

concede nothing in the one-shot case�and, by doing so, she can commit not to conceding

in the future, unless she surrenders. However, when the option to make a concession in the

future is always open, player 2 may always expect such a concession, and hence may have

a higher (expected) continuation value and a lower surrender threshold before a concession,

whence player 1 may choose to concede. Such equilibria disappear if we assume that partial

concessions can only be made for a limited time (i.e., for t ≤ t0), or if player 1 can commit

to not making partial concessions in the future.
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5 Multi-Dimensional State

The baseline model imposes that the state must a�ect the players' payo�s in opposite ways.

That is, θ is one-dimensional, and a higher θ is good for player 2 and bad for player 1. This

assumption simpli�es the analysis but is not essential. Indeed, this Section extends the model

to allow for a multi-dimensional state θt, in which an analog of Proposition 1 holds. The

substantive upshot is that the multi-dimensional model can capture richer variations in the

players' costs. For example, in a price war between two �rms, θt can be two-dimensional, with

one dimension representing total demand and the other representing relative market share.

Additionally, the stochastic process governing the state need only be �mean-reinforcing�

in one direction, so the multi-dimensional model can accommodate shocks that are mean-

reverting, cyclical, etc. by incorporating them into the additional dimensions of the state.

As in Section 2, there are two players living in discrete time with in�nite horizon. In

each period, each player can choose to continue or surrender. There is a state of the world

θt ∈ M = R ×∏k
i=1[−Mi,Mi] which is common knowledge at all times. The initial θ0 is a

parameter. For t > 0, it evolves according to a Markov process:

P (θt+1 − θt ≤ x|θt) = Fθt(x),

where, for each θ, Fθ : M → [0, 1] is an absolutely continuous joint c.d.f. with density fθ,

and x ≤ y i� xi ≤ yi for all i.

Before proceeding we will need two de�nitions. Denote v = (1, 0, . . . , 0) ∈ Rk+1. First,

given two distributions G, H over M, we say that G FOSDs H if there is a probability space

(Ω,F , P ) in which there exist random variables X, Y , Z : Ω → Rk+1 such that X ∼ G,

Y ∼ H, X = Y + Z, and Z(ω) ≡ α(ω)v for a non-negative random variable α : Ω → R≥0.

That is, X always di�ers from Y by a weakly positive multiple of v. Second, we will say

that a set A ⊆ M is monotonic if θ ∈ M =⇒ θ + av ∈ M for all a > 0. Analogously, A is

anti-monotonic if θ ∈ M =⇒ θ + av ∈ M for all a < 0.

We will assume that, for some η > 0,

A1' fθ is continuous in θ, i.e., the mapping θ 7→ fθ is continuous, taking the 1-norm in the

codomain.

A2' Fθ is weakly FOSD-monotonic in θ for all θ ∈ M, in the following sense: if θ, θ′ are

such that θ = θ′ + av for some a > 0, then Fθ FOSDs Fθ′ .

A3' For all θ ∈ M, supp(Fθ) is a convex compact set with nonempty interior such that

0 ∈ supp(Fθ) ⊆ B(0, η) ∩
(
R×∏k

i=1[−Mi − θi,Mi − θi]
)
.
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Assumptions A1' and A3' are natural adaptations of the analogous assumptions given in

Section 2. The appropriate version of A2�ruling out mean reversion�is less obvious. In-

tuitively, A2' says that, if a state θ is higher than another state θ′ (in the sense of being

higher in the �rst dimension), then the drift of the state conditional on starting at θ is also

a shifted-up version of the drift starting at θ′. (In particular, A2' is automatically true if fθ

is equal to a �xed density f for all θ, or more generally if the �rst dimension of θt satis�es

A2 and evolves independently of the other dimensions.)

We assume the following about the players' payo� functions:

B1' c1(θ) is strictly increasing, and c2(θ) is strictly decreasing, in the �rst argument of θ.

That is, if θ = θ′ + av for a > 0, then c1(θ) > c1(θ
′) and c2(θ) < c2(θ

′).

B3' There is a �nite D > 0 such that, for any θ ∈ M, there are a < b ∈ R such that

c1(θ + xv) ≤ 0 for all x ≤ a, c2(θ + xv) ≤ 0 for all x ≥ b, and b− a ≤ D.

plus B2, B5 and B6, which are unchanged from the baseline model.

Again, B1' and B3' are analogous to B1 and B3, respectively. B1' now requires that

shifting the state up in the �rst dimension is bad for player 1 and good for player 2, while

B3' requires that high enough positive (negative) shifts in the �rst dimension take player

2 (1) into a region where �ghting yields a bene�t rather than a cost.25 No analog of B4 is

needed as we have e�ectively taken M = ∞ in the relevant (�rst) dimension.

The following Proposition characterizes the equilibrium of this game.

Proposition 8. There is a unique SPE. In it, player 1 surrenders whenever θt ∈ A, and

player 2 surrenders whenever θt ∈ B, where A, B ⊂ M are disjoint sets such that A is

monotonic and B is anti-monotonic.

This generalized model nests the following natural example. Consider a price war between

two duopolists. Let θt = (θ1t, θ2t). Assume that c1(θ) is strictly increasing in θ1 and c2(θ)

is strictly decreasing in θ1, while both �ow costs are decreasing in θ2. We can interpret θ1

as representing player 2's market share, and θ2 as representing total demand. (Note that

A2' is satis�ed automatically if we assume that fθ ≡ f is independent of θ.) Thus, both the

distribution of the pie as well as its size can vary, whereas the baseline model essentially only

allowed the players to steal market share from each other, with the market size held �xed.

The main properties of the equilibrium found in Proposition 1 are still present here. The

equilibrium is unique, and is given by three sets: a surrender region for each player, and the

disputed region separating them. If the initial state is in the disputed region, both players

25For technical reasons, B3' also requires that the gap between the players' dominance regions be uniformly
bounded. Our results hold for any D, so this condition can be relaxed as much as desired.
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have a positive probability of winning, and they both have positive expected payo�s. In

addition, Proposition 2 can be extended to this model: increasing H1 will shrink player 1's

surrender region and expand player 2's, etc.

Among other things, this extension is useful in comparing this paper to Georgiadis et

al. (2022). Georgiadis et al. (2022) studies a war of attrition with a time-varying, one-

dimensional state θt which a�ects both players symmetrically, rather than in opposite ways.

Player 1 is assumed to have a lower outside option; the players are otherwise identical.26 The

authors show that, in every (Markovian) equilibrium of their model, there is a player who

is guaranteed to quit �rst, regardless of how the state evolves; but who this player is may

depend on the equilibrium. More precisely, there is always an equilibrium in which player

1 never surrenders before player 2. If the outside options di�er by enough, this is the only

equilibrium; else there are also equilibria in which player 2 never surrenders before player 1.

These results contrast with the ones in this paper. Indeed, the equilibrium may not be

unique; in every equilibrium, there is no uncertainty about who quits �rst; and, consequently,

the player who surrenders �rst plays as if she expected the opponent to never surrender. In

contrast, in this paper, both players �gamble� on the other player surrendering �rst.

The model in this Section�in particular, the duopoly example�approximately nests

both Georgiadis et al. (2022) and the main model from Section 2. Setting θ1t constant yields

the model in Georgiadis et al. (2022), while setting θ2t constant yields our baseline model.

The multi-dimensional model allows us to consider any (imperfect) correlation structure,

and hence can approximate both extremes.

More precisely, let θ1t = µdt+ σdBt and θ2t = µ̃dt+ σ̃B̃t, where Bt, B̃t are independent

Brownian motions. Then setting µ̃ = σ̃ = 0 yields a degenerate case analogous to our

baseline model, whereas setting µ = σ = 0 yields a degenerate case analogous to Georgiadis

et al. (2022), in which their main results hold. Proposition 8 shows that the main results

from our baseline model survive for σ, σ̃ > 0. Moreover, it can be shown that, as σ, µ → 0,

the selected equilibrium converges to one in which player 2�the one with the higher outside

option�always exits �rst. Thus, adding slight uncertainty about the players' future relative

strengths allows us to eliminate the equilibrium multiplicity in Georgiadis et al. (2022).

6 Conclusions

We have shown that the addition of an evolving state of the world to the classic war of

attrition yields several attractive properties absent from the unperturbed game: the equi-

librium is unique and the comparative statics are well behaved. In particular, if a player's

26This is equivalent to player 1 having a higher prize and lower costs.
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prize increases or her cost decreases, she is more likely to win, and the war will end sooner

if she held an advantage to begin with, whereas it will lengthen if she was an underdog at

�rst. The model can be augmented to allow for partial concessions. The logic that arises is

that concessions can bene�t the conceder when they disproportionately sap the opponent's

incentive to �ght.

Relative to models with reputational concerns, the evolving war of attrition makes pre-

dictions that are less sensitive to small perturbations to the parameters (in particular, the

players' reputations). The two frameworks diverge further when concessions are allowed:

since our model has complete information, the players need not worry that concessions will

signal weakness, as they might in a reputational model.

The logic of unilateral concessions is also distinct from that of o�ers in a bargaining

framework: concessions cannot be rejected, but they also cannot be made in exchange for

a matching concession from the opponent. As a result, it is harder to end a war when

only unilateral concessions are available, and the conceder may do better or worse than in a

bargaining setting.

An obvious avenue for further work is to consider a model in which both players can

make (unilateral) concessions during the war. Such a model introduces a new strategic

logic: a player may make a concession not to induce outright surrender by the other player,

but rather to put him in a precarious enough position that he must make a countervailing

concession to remain competitive in the continuation, and so on.

Other applications are possible. For instance, the game can be extended to include

costly commitment devices, i.e., �bridge-burning�; to wars of attrition involving more than

two players, as in legislative stando�s; or to cases where players have some control over the

�ow costs (e.g., �rms may engage in a price war with limited scope, or countries may ban

certain types of weapons to limit the costs of war). Such actions are commonplace, and have

been discussed by game theorists since at least Schelling (1960), but not given a systematic

treatment within the war of attrition framework.
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A Proofs

De�nition 1. A (non-terminal) history at time t, ht, is a sequence of states of the world

(θ)t = (θ0, . . . , θt), and the sequence of actions (ais)i,s given by ais = 1 for i = 1, 2 and

s = 0, . . . , t.

We will say histories to refer to non-terminal histories for brevity, and write ht = (θ)t

as shorthand for ht = ((θ)t, (1, . . . , 1), (1, . . . , 1)). We will denote by H the set of all (non-

terminal) histories and by Ht the set of all (non-terminal) histories at time t.

De�nition 2. A strategy for player i, denoted by ψi, is a collection of probabilities ψi(h) ∈
[0, 1] for each history h, denoting the probability that player i continues at history h.

We assume that players can only choose measurable strategies. Formally, ψi : H → [0, 1]

is a measurable strategy for player i if, for all t, ψi|Ht is a measurable function from (Ht,Ft)

to ([0, 1],B([0, 1])), where Ft is the σ-algebra generated by the random vector ht : Ω →
[−M,M ]t and B([0, 1]) is the Borel σ-algebra on [0, 1].

De�nition 3. A strategy ψi(h) for player i is Markov if ψi(h) = ψi(h
′) for all h = (θ)t,

h′ = (θ)t
′
such that θt(h) = θt′(h

′).

A strategy ψ1 for player 1 (2) is a threshold strategy with threshold θ∗ if ψ1(ht) = 1

whenever θt(ht) < θ∗ (>) and ψ1(ht) = 0 whenever θt(ht) > θ∗ (<).

De�nition 4. For any history h and strategies ψi, ψj, let Ui(ψi, ψj|h) be i's continuation
utility from strategy pro�le (ψi, ψj) at history h.

De�nition 5. For any history h0, any strategy ψi for player i, and any α ∈ [0, 1], let ψh0,αi

be a strategy for player i given by ψh0,αi (h) = α if h = h0 and ψ
h0,α
i (h) = ψi(h) otherwise.

De�nition 6. Given two strategies ψi(h), ψi(h
′) for player i, we say ψi ≥ ψ′

i i� ψi(h) ≥ ψ′
i(h)

for all histories h.

Proof of Proposition 1. Our proof of uniqueness uses familiar tools from the supermodular

games literature (Milgrom and Roberts, 1990; Morris and Shin, 1998). The main steps are

as follows. First, we show the game is supermodular in the following sense: if player i quits

more in equilibrium, then player j's best response is to quit less, and vice versa. Standard

results (Milgrom and Roberts, 1990) then imply the existence of a greatest equilibrium

(where 1 quits as much as possible, and 2 as little as possible) and a smallest equilibrium

(where the reverse happens) that serve as upper and lower bounds, respectively, for all other

equilibria. Second, we show that the best response to a threshold strategy is a threshold

strategy. Third, we note that the extremal equilibria can be found by iterating the best

32



response correspondences from the extreme pro�les where one player always surrenders and

the other never does (which are degenerate threshold strategies), which implies that the

extremal equilibria are in threshold strategies. Fourth, we show that there is a unique

equilibrium in threshold strategies. Then the extremal equilibria must coincide. Since the

extremal equilibria bound all other equilibria, there cannot be any other equilibria.

1. Supermodularity.

De�nition 7. Given a strategy ψj for player j and a history h, let Vi(ψj|h) be the highest
continuation utility player i can attain conditional on the history being h and player j using

strategy ψj, i.e.,

Vi(ψj|h) = sup
ψi

Ui(ψi, ψj|h).

Let Ṽi(ψj|h) be the highest continuation utility player i can attain conditional on the

history being h and player j using strategy ψj, if player i is restricted to not surrendering in

the current period, i.e.,

Ṽi(ψj|h) = −ci(θ(h)) + δE(Vi(ψj|h′)|h).

Lemma 1. Let ψj ≥ ψ′
j be two strategies for player j, let ψi be a strategy for player i and

let h be any history. Then

Ui(ψi, ψj|h) ≤ Ui(ψi, ψ
′
j|h).

Proof. Let h be a history for time t0. Then Ui(ψi, ψj|h)−Ui(ψi, ψ′
j|h) =

∑∞
t=t0

δt−t0Et, where

Et equals

�
Q(ψi, ψ

′
j, (θ)

t)(ψj((θ)
t)− ψ′

j((θ)
t))ψi((θ

t))
(
Ui

(
ψ

(θ)t,1
i , ψ

(θ)t,1
j |(θ)t

)
−H1

)
dP ((θ)t|(θ)t0) ≤ 0

Here Q(ψi, ψ
′
j, (θ)

t) is the probability that the war continues up to time t conditional on the

path of the state of the world being (θ)t and the players using strategies ψi, ψ
′
j respectively.

The last inequality follows from the fact that Ui

(
ψ

(θ)t,1
i , ψ

(θ)t,1
j |(θ)t

)
−H1 < 0 by Assumption

B5.

Corollary 1. Let ψj ≥ ψ′
j be two strategies for player j and let h be any history. Then

Vi(ψj|h) ≤ Vi(ψ
′
j|h).

De�nition 8. We say a strategy ψi for player i is a subgame-perfect response to a strategy

ψj for player j if it is a best response in every subgame.
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Lemma 2. ψi is a subgame-perfect response to ψj i�, for all h, it satis�es: ψi(h) = 1 if

Ṽi(ψj|h) > 0 and ψi(h) = 0 if Ṽi(ψj|h) < 0.

Proof. (=⇒) Starting at history h, any strategy ψi attains utility Ui(ψi, ψj|h) = ψi(h)U(ψ
h,1
i , ψj|h).

If Ṽi(ψj|h) > 0, attaining positive utility starting at h is possible for i, so a subgame-perfect

response ψi must accomplish this. Then Ui(ψ
h,1
i , ψj|h) > 0, so it is optimal to set ψi(h) = 1.

If Ṽi(ψj|h) < 0, then Ui(ψ
h,1
i , ψj|h) < 0 for any ψi, so it is optimal to set ψi(h) = 0.

(⇐=) Suppose ψi satis�es the given condition but is not a subgame-perfect response,

so there is ψ′
i such that Ui(ψi, ψj|h) < Ui(ψ

′
i, ψj|h) for some h. The de�nition of ψi, plus

(=⇒), imply that ψi(h) = ψ′
i(h). Then there is some history h′ in the next period such that

Ui(ψ
′
i, ψj|h′)−Ui(ψi, ψj|h′) > Ui(ψ

′
i,ψj |h)−Ui(ψi,ψj |h)

δ
. Iterating yields a contradiction, since both

ψi and ψ
′
i can only generate payo�s in [0, Hi] at every history.

Lemma 3. Let ψj, ψ
′
j be two strategies for player j such that ψj ≥ ψ′

j. Let ψi ∈ BRi(ψj).

Then there is ψ′
i ∈ BRi(ψ

′
j) such that ψ′

i ≥ ψi.

Proof. From Corollary 1 and the de�nition of Ṽi(ψj|h), we get Ṽi(ψj|h) ≤ Ṽi(ψ
′
j|h) for all h.

Let A+, A0 and A− be the set of histories h for which Ṽi(ψj|h) > 0, Ṽi(ψj|h) = 0 and

Ṽi(ψj|h) < 0 respectively, and de�ne A′
+, A

′
0 and A′

− analogously for ψ′
j. Then A+ ⊆ A′

+

and A+ ∪ A0 ⊆ A′
+ ∪ A′

0.

De�ne ψ′
i as follows: ψ

′
i(h) = 1 if h ∈ A′

+ ∪ A′
0 and ψ

′
i(h) = 0 otherwise. Then ψ′

i ≥ ψi

by construction, and ψ′
i is a best response to ψ′

j by Lemma 2.

Lemma 3 implies the existence of extremal equilibria (Milgrom and Roberts, 1990). Since

they turn out to be in threshold strategies, we develop some results on threshold strategies

before characterizing the extremal equilibria.

2. Best response to threshold strategy is a threshold strategy.

Lemma 4. In any SPE, player 1 never surrenders at time t if θt < −M1, and player 2 never

surrenders at time t if θt > M2.

Proof. For player 1, surrendering when θt < −M1 yields a payo� of 0, while continuing and

surrendering tomorrow yields a strictly positive payo�. The proof for player 2 is identical.

Lemma 5. There are M > −M + η and M < M − η such that, in any SPE, player 1

surrenders if θ > M and 2 surrenders if θ < M .

Proof. Assume that θt ≥M − η, and that player 2 plays a threshold strategy with threshold

M2. As usual, player 1 can guarantee a payo� of 0 by surrendering.
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Suppose that player 1 does not surrender immediately. There are two possibilities. Either

player 2 surrenders at some time t′ ≥ t, or player 1 surrenders at some time t′ > t. In the

�rst case, it must be that θt′ ≤M2. Player 1's utility is

δt
′−tH1 −

s=t′−1∑
s=t

δs−tc1(θs).

Recall that, by Assumption A3, |θs+1−θs| ≤ η for all s. ThenM−η−M2 ≤ |θt′−θt| ≤ (t′−t)η.
Then

t′−1∑
s=t

c1(θs) ≥ (t′ − t)c1(M2) ≥ c1(M2)
M −M2 − η

η
> H1,

where the last inequality uses Assumption B4. Hence

δt
′−tH1 <

t′−1∑
s=t

δt
′−tc1(θs) ≤

t′−1∑
s=t

δs−tc1(θs).

Hence player 1's continuation utility is negative in this case. In the second case where player

1 surrenders, if the state never makes it below −M1 before she surrenders, her utility is also

negative. If the state makes it below −M1, by B5, her payo� is no better than if would be

if player 2 surrendered as soon as θ reached −M1, and this payo� is negative by the same

argument as in the �rst case.

Thus, player 1 would strictly prefer to surrender if θt ≥ M − η. By continuity, player 1

would also strictly prefer to surrender for all θ < M − η close enough to M − η. By Lemma

1, player 1 would also prefer to surrender if player 2 used any other strategy that does not

violate Lemma 4.

The argument for player 2 is analogous.

Lemma 6. Let θ∗ ∈ [−M,M2]. If player 2 uses a threshold strategy with threshold θ∗, player

1 has an essentially unique subgame-perfect response, which is also a threshold strategy. We

denote player 1's best-response threshold by T1(θ∗).

Let θ∗ ∈ [−M1,M ]. If player 1 uses a threshold strategy with threshold θ∗, player 2 has

an essentially unique subgame-perfect response, which is also a threshold strategy. We denote

player 2's best-response threshold by T2(θ
∗).

Proof. We prove the �rst statement; the second one is analogous. Suppose that player 2 uses

a threshold strategy with threshold θ∗ ∈ [−M,M2], which we denote by ψθ∗2 . Let V1(θ) be

the highest continuation utility player 1 can attain conditional on the current state being θ
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and player 2 using strategy ψθ∗2 , i.e.,

V1(θ) = sup
ψ1

U1(ψ1, ψ
θ∗
2 |θ)

Note that V1 only depends on the current state and not on the history of states of the world,

since player 2 is not conditioning on the history. Next, we prove several properties of V1(θ)

by a recursive argument.

Claim 1. V1(θ) is weakly decreasing in θ.

Proof. Let V10(θ) be given by V10(θ) = H1 if θ ≤ θ∗ and V10(θ) = 0 otherwise. Let L denote

the set of Lebesgue-measurable functions from [−M,M ] to [0, H1]. De�ne the operator

W : L → L by

W (g)(θ) =


H1 if θ ≤ θ∗

max (−c1(θ) + δE(g(θ′)|θ), 0) if θ ∈ (θ∗,M − η)

0 if θ ∈ [M − η,M ]

(8)

where θ′ − θ|θ ∼ Fθ. For each k ∈ N, de�ne V1k = W (V1(k−1)).

Note that, for all g in the domain of W , W (g) is always in the codomain of W by

Assumption B5.

We will now make several observations about W . First, V1 is a �xed point of W . Indeed,

for θ ∈ (θ∗,M − η), the statement that W (V1)(θ) = V1(θ) is just the Bellman equation for

V1. For θ ≤ θ∗, W (V1)(θ) = V1(θ) = H1 by construction. For θ ≥ M − η, W (V1)(θ) =

V1(θ) = 0 by Lemma 5. Of course, note that V1 ∈ L because V1(θ) ∈ [0, H1] for all θ

by Assumption B5, and V1 is Lebesgue-measurable since, in fact, it must be continuous on

(θ∗,M ] by Assumptions A1 and B2.

Second, W has at most one �xed point by the contraction mapping theorem. Indeed, W

is Lipschitz with constant δ < 1 if we endow the space R[−M,M ] with the norm || · ||∞.
Third, W is weakly increasing (i.e., if g ≥ h everywhere, W (g) ≥ W (h) everywhere).

Fourth, note that V11 ≥ V10 by construction. Then V1(k+1) ≥ V1k for all k. Hence, for

each θ, the sequence (V1k(θ))k is weakly increasing in k. Since it is also bounded, it con-

verges pointwise, and the pointwise limit is a �xed point of W by the monotone convergence

theorem. Then, by our previous arguments, V1k converges pointwise to V1.

Fifth, W preserves decreasing-ness: if g is weakly decreasing in θ, so is W (g). For

θ ∈ [θ∗,M − η], this follows from Assumptions A2, B1 and B5. For other values of θ, it is

obvious. Then, since V10 is weakly decreasing in θ, V1k is weakly decreasing in θ for all k,

and so is V1.
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Denote Ṽ1(θ) = −c1(θ) + δE(V1(θ
′)|θ).

Claim 2. Ṽ1(θ) is strictly decreasing in θ.

Proof. This follows from the facts that V1(θ
′) is weakly decreasing in θ′ (Claim 1); θ′ is

FOSD-increasing in θ by Assumption A2; and c1(θ) is strictly increasing in θ by Assumption

B1.

Claim 3. Ṽ1(θ) and V1(θ) are continuous for θ ∈ (θ∗,M ].

Proof. Ṽ1(θ) is continuous in θ for the following reasons: c1(θ) is continuous by Assumption

B2; V1 is bounded, as V1(θ) ∈ [0, H1] for all θ; and fθ is continuous in θ by Assumption A1.

Recall that, for θ ∈ (θ∗,M ], V1(θ) = max(Ṽ1(θ), 0). Then, since Ṽ1 is continuous in θ and

the function max(·, 0) is continuous, V1(θ) is continuous in θ for all θ ∈ (θ∗,M ].

Now note that, by Lemma 5, Ṽ1(θ) < 0 for θ = M − η, and Ṽ1(θ) is continuous and

strictly decreasing in θ by Claims 2 and 3. Then there are two possibilities. Either there is

a unique state T1(θ∗) > θ∗ for which Ṽ1(T1(θ∗)) = 0, or Ṽ1(θ) < 0 for all θ > θ∗.

By Lemma 2, in the �rst case, ψ
T1(θ∗)
1 is the essentially unique subgame-perfect response

to ψθ∗2 .27 In the second case, the unique best response for player 1 is a threshold strategy

with threshold T1(θ∗) = θ∗, such that ψ1(θ∗) = 1.

Corollary 2. T1, T2 : [−M,M ] → [−M,M ] are weakly increasing.

Proof. Follows from Lemma 3.

3. Extremal equilibria exist and are in threshold strategies.

Lemma 7. There is a greatest equilibrium and a smallest equilibrium, both in threshold

strategies. That is, there are threshold strategy equilibria with thresholds θ∗ for player 2, θ
∗ for

player 1 and θ∗ for player 2, θ
∗
for player 1 such that, for any SPE (ψ1, ψ2), ψ

θ
∗

1 ≤ ψ1 ≤ ψθ
∗

1

and ψ
θ∗
2 ≤ ψ2 ≤ ψθ∗2 .

Proof. We use a standard argument similar to Milgrom and Roberts (1990). De�ne θ∗0 =

−M , θ
∗
0 = −M1 and θ∗(n+1) = T2(θ

∗
n), θ

∗
n+1 = T1(θ∗n) for all n ≥ 0. Analogously, set

θ∗0 =M2, θ
∗
0 =M and θ∗(n+1) = T2(θ

∗
n), θ

∗
n+1 = T1(θ∗n) for all n ≥ 0.

Since T2(−M1) ≥ −M and T1(−M) ≥ −M1, we have θ∗1 ≥ θ∗0, θ
∗
1 ≥ θ

∗
0. Since T1, T2

are weakly increasing, iterating yields θ∗(n+1) ≥ θ∗n, θ
∗
n+1 ≥ θ

∗
n for all n. Let θ∗ = limn θ∗n,

θ
∗
= limn θ

∗
n. Analogously θ∗(n+1) ≤ θ∗n, θ

∗
n+1 ≤ θ∗n for all n, and we set θ∗ = limn θ∗n,

θ∗ = limn θ
∗
n.

27It is not unique in the sense that any value ψ1(T1(θ∗)) ∈ [0, 1] is optimal.
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Let (ψ1, ψ2) be an SPE. By construction, ψ
θ
∗
0

1 ≤ ψ1 ≤ ψ
θ∗0
1 and ψ

θ∗0
2 ≤ ψ2 ≤ ψθ∗02 .

Applying Lemma 3 and using that ψ2 ∈ BR(ψ1), ψ1 ∈ BR(ψ2), we obtain ψ
θ
∗
1

1 ≤ ψ1 ≤ ψ
θ∗1
1

and ψ
θ∗1
2 ≤ ψ2 ≤ ψθ∗12 . Iterating, ψ

θ
∗
n

1 ≤ ψ1 ≤ ψ
θ∗n
1 and ψ

θ∗n
2 ≤ ψ2 ≤ ψθ∗n2 for all n. Then

ψθ
∗

1 ≤ ψ1 ≤ ψθ
∗

1 and ψ
θ∗
2 ≤ ψ2 ≤ ψθ∗2 up to a set of measure zero. (We can tie-break within

the threshold strategies so that the claim holds properly.)

It remains to show that (ψθ
∗

1 , ψ
θ∗
2 ) and (ψθ

∗

1 , ψ
θ∗
2 ) are equilibria. It is enough to show

that T2(θ
∗) = θ∗, T1(θ∗) = θ∗; the other one is analogous. Since T2(θ

∗
n) = θ∗(n+1) and

T1(θ∗n) = θ∗n+1 for all n, and θ∗ = limn θ∗n, θ
∗ = limn θ

∗
n, it is enough to show that T1, T2 are

continuous. We show in the next step that, in fact, these functions are Lipschitz.

4. Unique equilibrium in threshold strategies; extremal equilibria coincide.

By Lemma 6, if one player uses a threshold strategy, the other player does too, and

the latter threshold is uniquely determined as a function of the former. An equilibrium in

threshold strategies is given by a threshold θ∗ for player 1 such that T1(T2(θ
∗)) = θ∗.

We now argue that, for any x > y such that T1(y) > y, T1(x) − T1(y) < x − y. (In

particular, T1 is continuous.) In broad strokes, we will make the following argument. By

construction, player 1 is indi�erent about continuing when the current state is T1(y) and

player 2 uses threshold y. Suppose now that player 2 switches to using a higher threshold

x > y, and player 1's optimal response requires her to increase her own threshold exactly as

much as player 2 did, i.e., to z = T1(y)+x− y. Then, under the new strategy pro�le, player

1's utility in state z is lower than her utility in state T1(y) under the old strategy pro�le, for

two reasons: her �ow costs are higher, and the Markov process governing the state is more

likely to drift to the right. The same problem arises if z − T1(y) > x − y. Hence player 1's

optimal response must involve moving her threshold up by less than x− y.

Formally, let tϵ be the function tϵ(θ) = θ− ϵ. Take ϵ = θ̃− θ̃′. For any function V , denote
V = V ◦ tϵ. For any operator W , de�ne W by W (g) = W (g ◦ t−1

ϵ ) ◦ tϵ.
By construction, V

θ̃′

1k = W
θ̃′

(V
θ̃′

1(k−1)) for all k, and V
θ̃′

10 = V θ̃
10.

The crucial observation now is that, for any weakly decreasing function g, W
θ̃′

(g) ≥
W θ̃(g). Indeed,

W
θ̃′

(g)(θ) =

H1 if θ − ϵ ≤ θ̃′ ⇔ θ ≤ θ̃

max (−c1(θ − ϵ) + δE(g(θt+1 + ϵ)|θt = θ − ϵ), 0) if θ > θ̃

Note that −c1(θ − ϵ) > −c1(θ) by Assumption B1, and θt+1 + ϵ = (θ − ϵ) +X + ϵ where X

has distribution function Fθ−ϵ, which is weakly FOSD'd by Fθ by Assumption A2.

It follows that V
θ̃′

1k ≥ V θ̃
1k for all k, and hence V

θ̃′

1 ≥ V θ̃
1 .
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Finally, from Lemma 6, we know that −c1(θ) + δE(V θ̃
1 (θ

′)|θ) = 0 for θ = T1(θ̃). The

above argument implies that −c1(θ − ϵ) + δE(f(θt+1 + ϵ)|θt = θ − ϵ) > 0 for the same θ,

whence T1(θ̃
′) + ϵ > T1(θ̃). This �nishes the argument. On the other hand, if x > y and

T1(y) = y, a similar argument implies T1(x) = x, so T1(x)− T1(y) = x− y.

The analogous results are true of T2. In addition, it is not possible that T2(x) = T1(x) = x

for any x. Indeed, if this were the case, by Lemma 6, there would be an equilibrium with

thresholds θ∗ = θ∗ = x, in which both players have Ṽi(x) ≤ 0. But in this case Ṽ1(x) =

−c1(x) + δpH1 and Ṽ2(x) = −c2(x) + δ(1 − p)H2, where p is the probability that θt+1 > x

tomorrow, so it would be implied that 0 ≥ Ṽ1(x)+ Ṽ2(x) = −c1(x)− c2(x)+pH1+(1−p)H2,

which contradicts Assumption B6.

Taken all together, these arguments imply that T1◦T2 has at most one �xed point. Indeed,

if θ∗ ̸= θ∗
′
are both �xed points of T1 ◦ T2, we would have that |T1(T2(θ∗)) − T1(T2(θ

∗′))| ≤
|T2(θ∗)− T2(θ

∗′)| ≤ |θ∗ − θ∗
′ | with at least one strict inequality, a contradiction.

We showed in part 3 that θ
∗
, θ∗ are both �xed points of T1 ◦ T2. Therefore θ

∗
= θ∗.

Applying T2, θ∗ = θ∗ as well�the extremal equilibria coincide. Then Lemma 7 yields

that all SPEs coincide with the unique threshold equilibrium, up to randomizing at the

thresholds.

Proof of Proposition 2. For (i), take two cost functions c1, ĉ1 for player 1 such that ĉ1(θ) <

c1(θ) for all θ. (The cases where H1 increases or c2 or H2 change are analogous.) Assume that

player 2 is playing a threshold strategy with threshold θ∗. Using the notation developed in

Proposition 1, let V1(θ) and V̂1(θ) be the value functions for player 1 when her cost function

is c1(θ) and ĉ1(θ), respectively. We will similarly refer to the analogues of W , T1 under the

cost function ĉ1 as Ŵ , T̂1, respectively.

Note that Ŵ (g) ≥ W (g) for all g ∈ L. Hence Ŵ (V1) ≥ W (V1) = V1. As argued

in Proposition 1, Ŵ is increasing and V̂1 must be the limit of Ŵ k(g) for any g by the

Contraction Mapping Theorem. Hence

V1 ≤ Ŵ (V1) ≤ Ŵ 2(V1) ≤ . . .↗ V̂1,

whence V̂1 ≥ V1. From this and the fact that ĉ1(θ) < c1(θ) for all θ it follows that ˆ̃V1(θ) >

Ṽ1(θ) for all θ. Assume that T1(θ∗) > θ∗. Then we have V̂1(θ) > V1(θ) for all θ ∈ (θ∗, T1(θ∗)).

By the continuity of V̂1, V̂1(θ) > V1(θ) ≥ 0 for all θ in a neighborhood of T1(θ∗) as well, so

T̂1(θ∗) > T1(θ∗).

Let θ∗, θ
∗ denote the equilibrium thresholds when player 1's cost function is c1, and let

θ̂∗, θ̂
∗ denote the equilibrium thresholds when player 1's cost function is ĉ1. Since nothing

about player 2's problem has changed, T2 remains unchanged. θ̂∗, θ̂
∗ are characterized by
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the conditions that θ̂∗ be a �xed point of T̂1 ◦ T2 and θ̂∗ = T2(θ̂
∗. As θ∗ = T1(θ∗) > θ∗ by

Proposition 1, we have T̂1(θ∗) > θ∗. Because T1 and T2 are weakly increasing, we have

θ∗ <
(
T̂1 ◦ T2

)
(θ∗) ≤

(
T̂1 ◦ T2

)2
(θ∗) ≤ . . .↗ θ̂∗

Hence θ̂∗ > θ∗. By an analogous argument θ̂∗ > θ∗. As for the claim that θ̂∗ − θ̂∗ > θ∗ − θ∗,

recall that, in Proposition 1, we argued that Ti(x)− Ti(y) < x− y whenever x > y are such

that Ti(y) > y. Here, that implies

θ̂∗ − θ∗ = T2(θ̂
∗)− T2(θ

∗) < θ̂∗ − θ∗,

which yields the result.

The proof of (ii) is similar to (i). Brie�y, denoting by (f̂θ)θ a new set of transition

probabilities, and by Ŵi, V̂i and T̂i the new operators, value functions and threshold mappings

under the new transition probabilities, we can show that Ŵ1(g) ≤ W (g) for any weakly

decreasing g, and Ŵ2(g) ≥ W2(g) for any weakly increasing g. Hence V̂1 ≤ V1 and V̂2 ≥ V2,

for �xed conjectures about the other player's behavior, which is to say that T̂1 ≤ T1 and

T̂2 ≤ T2. By a similar argument as above, this implies θ̂∗ ≤ θ∗ and θ̂
∗ ≤ θ∗.

Proof of Proposition 3. We �rst characterize an equilibrium in threshold strategies (θ∗, θ
∗)

of the continuous time game, i.e., a �xed point of T 0
1 ◦ T 0

2 , which turns out to be unique

(among threshold strategies). We then show that θ∆∗ → θ∗, θ
∗∆ → θ∗ as ∆ → 0: (θ∗, θ

∗) is

also the unique limit of discrete-time equilibria.

Threshold-strategy equilibria in continuous time.

Begin by considering an arbitrary (not necessarily equilibrium) threshold strategy pro-

�le, with thresholds θ < θ. Note that both Vi(θt) and Pi(θt) are themselves drift-di�usion

processes by Itô's lemma:

dVi(θt) =

(
µ(θt)V

′
i (θt) +

σ2

2
V ′′
i (θt)

)
dt+ σVi(θt)dBt (9)

dPi(θt) =

(
µ(θt)P

′
i (θt) +

σ2

2
P ′′
i (θt)

)
dt+ σPi(θt)dBt (10)

At the same time, it follows from the Hamilton-Jacobi-Bellman equation for Vi that

0 = [−ci(θt)− γVi(θt)]dt+ E(dVi(θt)),
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and it follows from the law of iterated expectations that E(dPi(θt)) = 0.

Taking expectation of Equations 9 and 10 conditional on the value of θt,

ci(θ) + γVi(θ) = µ(θ)V ′
i (θ) +

σ2

2
V ′′
i (θ)

0 = µ(θ)P ′
i (θ) +

σ2

2
P ′′
i (θ).

In addition, the following boundary conditions must hold. V1(θ) = H1, V2(θ) = 0 as 2

surrenders at this state; V1(θ) = 0, , V2(θ) = H2 as 1 surrenders; and similarly P1(θ) = 1,

P1(θ) = 0, P2(θ) = 0, P2(θ) = 1.

De�ne T 0
1 as follows: θ = T 0

1 (θ) i� θ is a best response threshold for player 1 to θ, and T 0
2

analogously. We now argue that V ′
1(θ) = 0 i� θ = T 0

1 (θ), and V
′
2(θ) = 0 i� θ = T 0

2 (θ)�hence

the smooth-pasting conditions pin down the equilibrium thresholds θ∗, θ
∗. To see why, some

machinery is required. For θ ∈ [θ, θ], let Qt(θ) be the probability that, with the game having

started in state θ, player 1 has not surrendered by time t; and de�ne Q(θ) =
�∞
0
e−γtQt(θ).

De�ne Ṽ1(θ) =
V1(θ)
Q(θ)

for θ < θ, and Ṽ1(θ) = limθ→θ Ṽ1(θ). Note that Ṽ1(θ) is the expected

utility of player 1 under the following assumptions: the initial state is θ; the stochastic

process (θt)t snaps back to θ if it ever hits θ; and player 1 never surrenders. In particular,

Ṽ1(θ) is the expected utility of player 1 under the following assumptions: the initial state

is θ; the stochastic process (θt)t is re�ecting at θ; and player 1 never surrenders. It is clear

that Ṽ1(θ) = 0 (>,<) i� θ = T1(θ) (<,>). In addition, since V1(θ) = Q(θ)Ṽ1(θ), for θ < θ,

we have

V ′
1(θ) = Q′(θ)Ṽ1(θ) +Q(θ)Ṽ ′

1(θ).

Taking the limit as θ → θ, we obtain

V ′
1(θ) = Q′(θ)Ṽ1(θ) +Q(θ)Ṽ ′

1(θ) = Q′(θ)Ṽ1(θ),

as Q(θ) = 0. It can be shown that Q′(θ) < 0; the result follows.

Discrete-time equilibria converge to this equilibrium.

It can be shown by an analogous argument to Proposition 1 that the T 0
i satisfy |T 0

i (x)−
T 0
i (y)| < |x − y|. Thus the continuous time game has a unique equilibrium (θ∗, θ

∗) among

threshold strategy pro�les, given by a �xed point of T 0
1 ◦ T 0

2 . We now argue that θ∆∗ → θ∗,

θ∗∆ → θ∗ as ∆ → 0. Clearly, it is enough to show that ||T∆
i − T 0

i ||∞ → 0 as ∆ → 0

for i = 1, 2. In turn, because the T∆
i and T 0

i are increasing and continuous on a compact

interval, pointwise convergence implies uniform convergence, so it is enough to show that

T∆
i (x) → T 0

i (x) for any x.
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We show this for i = 1; the other case is analogous. Note that, holding �xed player 2's

threshold at x, player 1 is weakly worse o� when t = 0,∆, 2∆, . . . than in continuous time,

for two reasons. First, as the state evolves continuously, player 1 would like to quit whenever

θt crosses below T 0
1 (x), but in discrete time she must wait for the next time of the form k∆.

Second, player 1 is always better o� if player 2 quits, but player 2 quits less in discrete time,

even for the same x because she also has to wait for times of the form k∆ to quit. Then

T∆
1 (x) ≤ T 0

1 (x). It is not hard to show that these losses vanish in the limit as ∆ → 0, which

yields T∆
1 (x) → T 0

1 (x).

Proof of Proposition 4. Parts (i) and (ii) can be proved in the same fashion as their analogues

in Proposition 2.

For part (iii), denote by H1(θ∗, θ
∗) the value of H1 which makes θ∗ the optimal surrender

threshold for player 1 when player 2's threshold is θ∗. De�ne H2(θ∗, θ
∗) analogously. Then

the result is a consequence of Lemmas 8 and 9 in Appendix B. Indeed, suppose WLOG that

µ ≤ 0, and H1, H2 are increased to H
′
1, H

′
2 with

H′
1

H2
= H1

H2
. We want to show that θ∗ increases.

This is equivalent to showing that, if H2 is increased to H ′
2, the unique value H̃1 > H1 that

leaves θ∗ unchanged satis�es H̃1 < H ′
1, i.e.,

H̃1

H2
< H1

H2
.

This is equivalent to showing that H1(θ∗,θ∗)
H2(θ∗,θ∗)

is increasing in θ∗. But that follows from the

fact that
∂H1(θ∗,θ

∗)
∂θ∗

∂H2(θ∗,θ∗)
∂θ∗

is increasing in θ∗ (Lemma 8) combined with Lemma 9.

Proof of Proposition 5. First, we will argue that θ∗(ν) − θ∗(ν) → 0 as ν → 0. Suppose

otherwise. Then, by the Bolzano-Weierstrass theorem, we can take a sequence νk → 0 such

that θ∗(νk) → θ∗∗, θ
∗(νk) → θ∗∗, and θ∗∗ < θ∗∗. In particular, for k arbitrarily large, player

1 must prefer to continue when θt =
θ∗∗+θ∗∗

2
, even though his expected delay until θ∗(νk)

is hit tends to in�nity (since θ∗(νk) → θ∗∗ and µk(θ), σk → 0), a contradiction. Hence

θ∗(ν)− θ∗(ν) → 0 as ν → 0.

We now argue that θ∗(ν), θ
∗(ν) → θl, where θl is de�ned by c1(θ

l) = c2(θ
l). Assume

without loss that θl = 0 to simplify notation, and suppose for the sake of contradiction that

θ∗(νk), θ
∗(νk) → θ′ > 0 along some sequence νk → 0 (the case θ′ < 0 is analogous).

Next, consider the following change of variables: θ̂ = θ√
ν
. The �slowed down� process

θ̃νt ≡ θνt becomes, through this change of variables, ˆ̃θνt ≡ θ̃νt√
ν
. Recall that θt has parameters

(µ(θ), σ) and θ̃νt has parameters (νµ(θ),
√
νσ); then ˆ̃θνt has parameters (

√
νµ(θ), σ). More-

over, the cost functions become ci(θ) ≡ ci

(√
νθ̂
)
. The condition θ∗(νk), θ

∗(νk) → θ′ > 0

becomes θ̂∗(νk)
ν

, θ̂
∗(νk)
ν

→ θ′ > 0.
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Then, within [θ̂∗(νk), θ̂
∗(νk)], V̂1(θ̂; νk) and V̂2(θ̂; νk) must solve

c1(
√
νkθ̂) + γV̂1(θ̂; νk) =

√
νkµ(

√
νkθ̂)V̂

′
1(θ̂; νk) +

σ2

2
V̂ ′′
1 (θ̂; νk)

c2(
√
νkθ̂) + γV̂2(θ̂; νk) =

√
νkµ(

√
νkθ̂)V̂

′
2(θ̂; νk) +

σ2

2
V̂ ′′
2 (θ̂; νk)

subject to the boundary and smooth-pasting conditions. But note that, for k large enough

and any �xed ϵ > 0, c1(·) ∈ [c1(θ
′ − ϵ), c1(θ

′ + ϵ)] and c2(·) ∈ [c2(θ
′ + ϵ), c2(θ

′ − ϵ)], where

c1(θ
′ − ϵ) > c2(θ

′ − ϵ). On the other hand, |µ| is continuous, hence bounded in [−M,M ], so
√
νkµ(·) ∈ [−√

νkµ,
√
νkµ] for some �xed µ > 0. But then, for large enough k, the players

cannot both be indi�erent at their thresholds, since in the limit they face di�erent (constant)

costs and no drift over the disputed region.

We now calculate the limit of Vi

(
θ∗(ν)+θ∗(ν)

2

)
. We �rst do so in a degenerate case in which

c1(θ), c2(θ) ≡ c, and µ ≡ 0, imposing by �at that θ∗ + θ∗ = 0 (since this game otherwise

has multiple equilibria.) Equation 1 becomes c+ γVi(θ) =
σ2

2
V ′′
i (θ), which together with the

boundary and smooth-pasting conditions from Proposition 3 yields the solution

V1(θ) = − c

γ
+

c

2γ
e

√
2γ
σ

(θ∗−θ) +
c

2γ
e−

√
2γ
σ

(θ∗−θ)

V2(θ) = − c

γ
+

c

2γ
e

√
2γ
σ

(θ∗+θ) +
c

2γ
e−

√
2γ
σ

(θ∗+θ)

for θ ∈ [−θ∗, θ∗], and θ∗ must be such that

H +
c

γ
=

c

2γ
e2

√
2γ
σ
θ∗ +

c

2γ
e−2

√
2γ
σ
.θ∗

Denote Y = e2
√

2γ
σ
θ∗ and X =

√
Y . Then this is equivalent to

Y +
1

Y
=

2γH

c
+ 2 =⇒ Y =

γH

c
+ 1 +

√(
γH

c
+ 1

)2

− 1.

(This is the only valid solution since Y ≥ 1 by construction.) Then

Vi

(
θ∗ + θ∗

2

)
= Vi(0) = − c

γ
+

c

2γ
e

√
2γ
σ
θ∗ +

c

2γ
e−

√
2γ
σ
θ∗ =

c

2γ

(
X +

1

X
− 2

)
=

c

2γ

(X − 1)2

X
.

Since (X2−1)2

X2 = X2 + 1
X2 − 2 = 2γH

c
by construction,

c

2γ

(X − 1)2

X
=

c

2γ

(X − 1)2

X

(X + 1)2

X

X

(X + 1)2
= H

1

X + 1
X
+ 2

,
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as we wanted.

The general result now follows from a continuity argument, using the same change of vari-

ables as before. It is also worth noting that the same argument would yield the same result

for any sequence of drift-di�usion processes with parameters (νkµ(θ), ρkσ) with νk, ρk → 0

and νk
ρk

→ 0 as k → ∞.

Proof of Proposition 6. Let Vi(θ;x) be the players' continuation values after player 1 makes

a one-time concession which cedes [x, 1]. As we have assumed µ ≡ 0 and γ = 0, the

continuation values can be calculated from Equations 3�4, taking θ∗ = θ∗(x), θ
∗ = θ∗(x).

More precisely,

V1(θ;x) = min

(
2

σ2

� θ∗(x)

θ

(λ− θ)c1(λ)dλ,

� x

0

v1(x̃)dx̃

)
.

That is, V1(θ;x) =
2
σ2

� θ∗(x)
θ

(λ− θ)c1(λ)dλ if θ ≥ θ∗(x) and V1(θ;x) =
� x
0
v1(x̃)dx̃ otherwise.

Note that the �rst expression depends only on x through θ∗(x) and is an increasing function

of θ∗(x), while the second expression is increasing in x.

From Proposition 4.(i)-(iii), we know that θ∗(x) increases in the size of the concession

(i.e., it is decreasing in x), since a marginal increase in player 1's concession always lowers

player 2's remaining prize value proportionally more than her own. Thus, there is x0 ≥ 0

such that θ∗(x) > θ i� x < x0. Choosing x
∗ = x0 then dominates any choice below x0 (which

would still induce immediate surrender but leave a smaller prize for player 1). Player 1 thus

simply maximizes θ∗(x) over x ∈ [x0, 1]�an equivalent condition to θ∗(x) ≤ θ.

Since the continuation game after any concession x has a unique equilibrium (Proposition

3), to show equilibrium existence, it is enough to show that player 1's optimization problem,

maxx∈[x0,1] θ
∗(x), has a solution. De�ne θ∗(H1, H2), θ

∗(H1, H2) as the equilibrium thresholds

of the baseline model with generic prizes H1, H2, i.e., as the solutions of the system

H1 =
2

σ2

� θ∗

θ∗

(λ− θ∗)c1(λ)dλ, H2 =
2

σ2

� θ∗

θ∗

(θ∗ − λ)c2(λ)dλ.

By Proposition 3, θ∗(H1, H2), θ
∗(H1, H2) exist and are unique for all H1, H2 > 0. More-

over, by the inverse function theorem, they are C1 functions of (H1, H2), since the mapping

(θ∗, θ
∗) 7→ (H1, H2) has Jacobian

2

σ2

(
−
� θ∗
θ∗
c1(λ)dλ (θ∗ − θ∗)c1(θ

∗)

−(θ∗ − θ∗)c2(θ∗)
� θ∗
θ∗
c2(λ)dλ

)
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which is positive as (θ∗ − θ∗)c1(θ
∗) >

� θ∗
θ∗
c1(λ)dλ and (θ∗ − θ∗)c2(θ∗) >

� θ∗
θ∗
c2(λ)dλ. Then

(θ∗(x), θ
∗(x)) = (θ∗(H̃1(x), H̃2(x)), θ

∗(H̃1(x), H̃2(x)) is continuous because (H̃1, H̃2) is con-

tinuous in x. In particular, x 7→ θ∗(x) is continuous, so it attains a maximum in [x0, 1].

Proof of Remark 1. Since (H ′
1(x), H

′
2(x)) = (v1(x), v2(x)), the slope of the feasible path of

prize pairs is v2(x)
v1(x)

. This is increasing in x since v2(x) is increasing and v1(x) is decreasing,

so the feasible path of prize pairs is strictly convex. As for the level curve H2(H1; θ
∗), note

that, using (3)-(4),

∂H2(H1; θ
∗)

∂H1

=

∂H2(θ∗,θ∗)
∂θ∗

∂H1(θ∗,θ∗)
∂θ∗

=

∂
∂θ∗

(
2
σ2

� θ∗
θ∗
(θ∗ − λ)c2(λ)dλ

)
∂
∂θ∗

(
2
σ2

� θ∗
θ∗
(λ− θ∗)c1(λ)dλ

) =

=
−(θ∗ − θ∗)c2(θ∗)� θ∗

θ∗
−c1(λ)dλ

=
c2(θ∗)� θ∗

θ∗
c1(λ)dλ

.

As H1 grows while keeping θ
∗ constant, θ∗ decreases by Proposition 4. Then, by B1, c2(θ∗)

increases and
� θ∗
θ∗
c1(λ)dλ decreases, so ∂H2

∂H1
increases. Thus level curves are strictly convex.

Proof of Proposition 7. First, some preliminaries. We will restrict attention to equilibria in

threshold strategies. We denote such an equilibrium by (θp(x1), . . . , θp(1); θ
p(x1), . . . , θ

p(1)).

Here θp(xj) is player 2's equilibrium threshold for surrender when the current territory is

[0, xj) (so that if θ ≤ θp(xj) is reached, player 2 surrenders and concedes the remainder

of the prize, [0, xj)) and θ
p(xj) is player 1's threshold for partial concession given territory

[0, xj) (so if θ ≥ θp(xj) is reached, player 1 concedes [xj−1, xj) and the war continues over

[0, xj−1)). Note that this construction does not rule out �big� concessions by player 1: if

θp(xj) ≥ θp(xj−1), then a concession from state xj immediately leads to another, taking the

game to state xj−2 or lower. Also, θp(xj), θ
p(xj) may or may not coincide with θ∗(xj) and

θ∗(xj), de�ned in Section 4 as the equilibrium thresholds when the war is over territory [0, xj)

and no further concessions are possible. Given a (Markovian) strategy pro�le, we denote

player i's continuation value for an initial θ and remaining territory [0, xj) by Vi(θ;xj).

By similar arguments as in Proposition 3, the value functions and equilibrium thresholds

must satisfy the following properties: V2(θ;xj) solves the ODE c2(θ) = σ2

2
V ′′
2 (θ;xj) sub-

ject to the boundary conditions V2(θp(xj);xj) = V ′
2(θp(xj);xj) = 0 and V2(θ

p(xj);xj) =� xj
xj−1

v2(x)dx + V2(θ
p(xj);xj−1). On the other hand, V1(θ;xj) solves the ODE c1(θ) =

σ2

2
V ′′
1 (θ;xj) subject to the boundary conditions V1(θp(xj);xj) =

� xj
0
v1(x)dx, V1(θ

p(xj);xj) =

V1(θ
p(xj);xj−1) and V

′−
1 (θp(xj);xj) ∈ [V

′+
1 (θp(xj);xj−1), V

′−
1 (θp(xj);xj−1)].

28

28This more complicated smooth-pasting condition only applies when V1(θ;xj−1) has a kink at θp(xj),
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We �rst prove the second part by induction on k. For k = 1, we are in the base-

line game. For k = 2, an equilibrium in threshold strategies involves four thresholds:

(θp(x1), θp(1); θ
p(x1), θ

p(1)). Of these, θp(x1) and θp(x1) are pinned down by Proposition

1: since no further concessions are possible, θp(x1) = θ∗(x1) and θ
p(x1) = θ∗(x1).

There are two cases: x∗ = 1 or x∗ = x1. If x∗ = 1, we want to show that player

1's equilibrium payo� is no higher than V1(θ0), where V1(θ) is the value function from the

baseline model.

Note that, just as in the baseline model, player 1's payo� weakly increases if player 2's

surrender set expands (i.e., if θp(1) increases) and vice versa, so it is without loss to consider

the equilibrium with the highest possible value of θp(1). Suppose there is an equilibrium

with θp(1) > θ∗(1). In this case, V1(θ0; 1) would exceed V1(θ0) from the baseline model

including at θ0 = θ∗(1), and so θp(1) would exceed θ∗(1) > θ∗(x1) (since a concession yields

V1(θ0;x1) ≤ V1(θ0), due to θ∗(x1) < θ∗(1)). But then a partial concession by 1 would

immediately become a full surrender. Thus the players are e�ectively �ghting over the whole

prize, whence the only possible values for θp(1), θ
p(1) are in fact θ∗(1), θ

∗(1), a contradiction.

On the other hand, if θp(1) ≤ θ∗(1), then V1(θ0; 1) ≤ V1(θ0). Indeed, when θp(1) = θ∗(1),

it follows from θ∗(1) > θ∗(x1) that V1(θ0; 1) ≥ V1(θ0) > V1(θ0;x1) for all θ0, i.e., player 1

would lower her payo� by making a partial concession, whence she can at most get V1(θ0),

her payo� without concessions when 2's threshold is θ∗(1). For θp(1) < θ∗(1) player 1

must be worse o� than when θp(1) = θ∗(1); partial concessions may become optimal (when

θp(1) < T−1
1 (θ∗(x1))) but cannot reverse this conclusion.

If x∗ = x1, a similar argument applies: we must show that V1(θ0; 1) ≤ V1(θ0;x1) for θ0 ≥
θ∗(x1). But this can only fail to hold if θp(1) is high enough that V1(θ∗(x1); 1) >

� x1
0
v1(x)dx,

in which case V1(θ0; 1) > V1(θ0;x1) for every θ0 ∈ [θ∗(x1), θ
∗(x1)], whence θ

p(1) > θ∗(x1).

But then the players are again �ghting over the whole prize, so their thresholds must be

θ∗(1) and θ
∗(1), a contradiction.

Now suppose the result is true for a general k0, and take k = k0+1. Let x̂ be the maximizer

of θ∗(x) among x ∈ {x1, . . . , xk−1}. By the inductive hypothesis, V1(θ;xk−1) ≤ V̂1(θ), where

we de�ne V̂1(θ) as player 1's value function calculated in the baseline game but with prizes� x̂
0
v1(x)dx,

� x̂
0
v2(x)dx, i.e., V̂1(θ) =

2
σ2

� θ∗(x̂)
θ

(λ− θ)c1(λ)dλ.

There are two cases: x∗ = 1 > x̂ or 1 > x∗ = x̂. If x∗ = 1, then the inductive hypothesis

yields V1(θ;xk−1) = 0 for θ ≥ θ∗(x̂). Then, if θp(1) ≥ θ∗(1), a partial concession can only

ever hurt player 1 for θ ≤ θ∗(1), so the war is over the whole prize and the equilibrium

thresholds must be θ∗(1), θ
∗(1), yielding initial payo� V1(θ0). If θp(1) < θ∗(1), then player 1

is worse o�, as we argued for k = 2.

e.g., when θp(xj−1) = θp(xj).
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If 1 > x∗, then V1(θ0; 1) ≤ V̂1(θ0) as desired unless V1(θ0; 1) > V1(θ0;xk−1). But this can

only happen if θp(1) is high enough that V1(θ∗(x̂); 1) >
� x̂
0
v1(x)dx, in which case V1(θ0; 1) >

V1(θ0;xk−1) even for θ0 = θ∗(x̂), whence θp(1) > θ∗(x̂), so the players are �ghting over the

whole prize, a contradiction. Finally, note that an equilibrium in threshold strategies is easy

to construct recursively: taking as given θp(xj′), θ
p(xj′) for j

′ < j, the game played over

[0, xj) is supermodular by similar arguments to Lemmas 1 and 3, and the best response to

a threshold strategy is a threshold strategy for both players. Then we can �nd equilibrium

thresholds by iterating the players' best response correspondences from (θp(xj), θ
p(xj)) =

(M,M) for j = 1, then j = 2, etc.

For the �rst part of the Proposition, say x∗ = xj0 for some j0 ∈ {1, . . . , k}. Consider

the following strategy pro�le. For j < j0, take any threshold equilibrium, in particular the

one induced by the construction in the last paragraph. For j = j0, take θp(xj) = θ∗(xj),

θp(xj) = θ∗(xj). For j > j0, continue our construction given the previous thresholds.

Denote by V̌1(θ) player 1's payo� from playing the war of attrition with no concessions

over [0, x∗). We argue that our construction a) yields an equilibrium and b) gives player

1 the payo� V̌1(θ0) for all θ0 ≥ θ∗(xj0). For a), the equilibrium conditions are satis�ed by

construction for j < j0. For j = j0, note that a concession by player 1 leads to full surrender,

since part 1 of the Proposition implies that player 1's payo� in state (θ, xj−1) is 0 for all

θ ≥ maxj<j0 θ
∗(xj) < θ∗(xj0). Then, since the war is over the whole remaining prize, the

thresholds are compatible with equilibrium if and only if they match θ∗(xj0), θ
∗(xj0), which

they do by construction. For j > j0, the result holds by construction. As for b), note that

V1(θ;xj0) = V̌1(θ) for all θ ≥ θ∗(xj0) by construction. Moreover, V1(θ; 1) ≥ V1(θ;xj0) for all

θ since player 1 can always concede down to xj0 , and V1(θ; 1) ≤ V̌1(θ) for θ ≥ θ∗(xj0) by the

other part of the Proposition.

Finally, we argue that for j > j0, it is suboptimal for player 1 to not concede at θ =

θ∗(xj0): indeed, if there were j > j0 minimal such that it was weakly optimal not to concede

at θ = θ∗(xj0), we would need θ∗(xj) ≥ θ∗(xj0), which violates our assumptions. Then we

must have θ∗(xj) ≤ θ∗(xj0) for j > j0, meaning that player 1 concedes immediately down to

xj0 (with no further concessions until full surrender).

Proof of Proposition 8. We provide only a sketch of the proof, as it is largely analogous to

the proof of Proposition 1. The �rst step is to note that the game is supermodular, in the

following sense: order the players' strategy spaces so that a �higher� strategy for player 1 is

one with a higher surrender probability at every history, and a �higher� strategy for player 2

is one with a lower surrender probability at every history. Then, given two strategies ψ ≥ ψ′

for player 1, player 2's best response to ψ must be weakly higher than her best response to

ψ′. The proof is similar to that of Lemma 1. Brie�y, the reason is that player 2's equilibrium
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payo� at any history must be weakly higher when facing a player 1 more likely to surrender,

and up to indi�erence, player 2 ought to surrender i� her payo� from continuing is negative.

Then all equilibria are bounded in this sense between a greatest and a smallest equilibrium.

Call a strategy for player i (anti)monotonic if it has player i surrender whenever θ falls

in a (anti)monotonic set A. We refer to such a strategy simply by its surrender set A. The

second step is to note that, if player 1 plays a monotonic strategy A, then player 2's best

response is an anti-monotonic surrender set BR2(A); conversely, if player 2 plays an anti-

monotonic set B, player 1's best response BR1(B) is monotonic. It follows that, in both

the greatest and the smallest equilibrium of the game, player 1's strategy is monotonic and

player 2's is anti-monotonic.

The third step is to show that the greatest and the smallest equilibrium are identical (up

to measure zero). Denote player 1's and 2's surrender regions in the greatest equilibrium

by A, B respectively, and their surrender regions in the smallest equilibrium by A′, B′,

respectively. By assumption, A ⊇ A′ and B ⊆ B′. Assume that at least one of these

inclusions is strict (otherwise we are done).

It can be shown that the players' best-response mappings are contractions in a certain

sense. Namely, given two monotonic sets C ⊇ C ′, let d(C,C ′) = inf{a : C + av ⊆ C ′}.29
De�ne d analogously for nested pairs of anti-monotonic sets. Then, using Assumptions A2'

and B1', it can be shown that if d(C,C ′) > 0 then d(BR2(C), BR2(C
′)) < d(C,C ′) for C ⊇ C ′

monotonic, and analogously for anti-monotonic sets. The key point is as follows: suppose

θ ∈ ∂BR2(C) for some monotonic set C (i.e., player 2 is indi�erent about surrendering in

state θ when C is player 1's surrender region). Then she must strictly prefer to continue

in state θ + av when player 1's surrender set is C + av, for any a > 0, due to assumptions

A2' and B1'. It follows that BR2(C + av) ⊊ BR2(C) + av for any a > 0. In particular,

BR2(C
′) ⊆ BR2(C+d(C,C ′)v) ⊊ BR2(C)+d(C,C

′)v for any C ⊇ C ′ monotonic. Moreover,

the closure of BR2(C + d(C,C ′)v) must be contained in the interior of BR2(C) + d(C,C ′)v.

From here, it follows30 that d(BR2(C + d(C,C ′)v,BR2(C) + d(C,C ′)v) > 0 and hence

d(BR2(C), BR2(C
′)) < d(C,C ′). The argument is analogous for player 1.

But then d(B,B′) < d(A,A′) < d(B,B′), a contradiction.31 That A and B are disjoint

follows from Assumption B6'.

29Given a set S and a vector v, we denote S + v = {s+ v : s ∈ S}.
30Here, we use that

∏k
i=1[−Mi,Mi] is compact.

31Assumption B3' guarantees that d(A,A′), d(B,B′) are �nite.
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B Additional Proofs

Lemma 8.
| ∂H1(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
is increasing in θ∗ for all θ∗ < θ∗.

Proof. We proceed in several steps. The general strategy of the proof will be to identify

values of the parameters (in particular c1, c2 and µ) that yield the tightest case, in the sense

that |∂H1(θ∗,θ∗)
∂θ∗

| decreases as fast as possible and |∂H2(θ∗,θ∗)
∂θ∗

| increases as fast as possible, and
then prove the result directly in that case.

We begin with |∂H2(θ∗,θ∗)
∂θ∗

|. First, some auxiliary de�nitions. De�ne V1(θ; θ, θ, c1, H) as

player 1's expected payo� under the following conditions: the initial state is θ, the (possibly

non-equilibrium) disputed region is [θ, θ], and player 1's cost function and prizes are c1,

H. De�ne V̂1(θ; θ, θ, c1, H) as the same object but under the additional assumption that

the stochastic process (θt)t is re�ecting at θ, and player 1 never surrenders. (Note that

V̂1(θ; θ, θ, c1, H) = V1(θ; θ, θ, c1, H) whenever θ = T1(θ).) De�ne V2, V̂2 analogously.

Normalize γ = 1. We can write

V̂2(θ∗; θ∗, θ
∗, c2, H) = −

� θ∗

θ∗

p(θ)c2(θ)dθ + p(θ∗)H,

where p(θ) are probability weights satisfying p(θ∗) = 1 −
� θ∗
θ∗
p(θ)dθ and independent of c2,

H. In addition, note that

0 = V2(θ∗; θ∗, θ
∗, c2, H2(θ∗, θ

∗)) = V̂2(θ∗; θ∗, θ
∗, c2, H2(θ∗, θ

∗)).

Now, for any ϵ > 0, write

0 = V2(θ∗ − ϵ; θ∗ − ϵ, θ∗, c2, H2(θ∗ − ϵ, θ∗)) = V̂2(θ∗ − ϵ; θ∗ − ϵ, θ∗, c2, H2(θ∗ − ϵ, θ∗)) =

= −
� θ∗

θ∗−ϵ
p(θ)c2(θ)dθ +QV̂2(θ∗; θ∗, θ

∗, c2, H2(θ∗ − ϵ, θ∗)) =

= −
� θ∗

θ∗−ϵ
p(θ)c2(θ)dθ +Q

[
−
� θ∗

θ∗

p(θ)c2(θ)dθ + p(θ∗)H2(θ∗ − ϵ, θ∗)

]
,

where p(θ)|[θ∗,θ∗] is the same function as in the previous expression; p(θ)[θ∗−ϵ,θ∗] is the prob-

ability of the future state being θ (before or after hitting θ∗); and Q = 1−
� θ∗
θ∗−ϵ p(θ)dθ.

Equivalently, we can write

0 = −
� θ∗

θ∗−ϵ
p(θ)c2(θ)dθ +

(
1−

� θ∗

θ∗−ϵ
p(θ)dθ

)
p(θ∗) [H2(θ∗ − ϵ, θ∗)−H2(θ∗, θ

∗)] .
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Taking ϵ→ 0, we obtain

|∂H2(θ∗, θ
∗)

∂θ∗
| = −∂H2(θ∗, θ

∗)

∂θ∗
=
p(θ∗)c2(θ∗)

p(θ∗)
. (11)

We are interested in the case where this expression increases as fast as possible, in the

following sense. Take parameters c2, µ and c̃2, µ̃, and denote by H2, H̃2 the corresponding

prizes. We say (c̃2, µ̃) > (c2, µ) if
| ∂H̃2(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
is increasing in θ∗. Then, if we prove Lemma 8

for (c̃2, µ̃), we have automatically proved it for (c2, µ).

Suppose c2 is strictly decreasing, and let c̃2 be a constant positive cost. By Equation 11,

we clearly have (c̃2, µ) > (c2, µ). We can then restrict our attention to the case where c2 is

constant. WLOG, we take c2 ≡ 1.

Next we will consider changes in µ. Write

|∂H2(θ∗, θ
∗)

∂θ∗
| = p(θ∗; θ∗, [θ∗, θ

∗])

p(θ∗; θ∗, [θ∗, θ∗])
:= A(θ∗),

where we have made it explicit that p(θ; θ0, [θ∗, θ
∗]) depends on the initial state, θ0, and the

disputed region, [θ∗, θ
∗]. Take ϵ > 0, and write

A(θ∗ + ϵ)

A(θ∗)
=
p(θ∗ + ϵ; θ∗ + ϵ, [θ∗ + ϵ, θ∗])

p(θ∗; θ∗[θ∗, θ∗])

p(θ∗; θ∗, [θ∗, θ
∗])

p(θ∗; θ∗ + ϵ, [θ∗ + ϵ, θ∗])

Now note that

p(θ∗; θ∗, [θ∗, θ
∗]) = Qp(θ∗; θ∗ + ϵ, [θ∗ + ϵ, θ∗])

p(θ∗ + ϵ; θ∗, [θ∗, θ
∗]) = Qp(θ∗ + ϵ; θ∗ + ϵ, [θ∗ + ϵ, θ∗]),

where Q =
(
1−

� θ∗+ϵ
θ∗

p(θ; θ∗, [θ∗, θ
∗])dθ

)
. Hence

A(θ∗ + ϵ)

A(θ∗)
=
p(θ∗ + ϵ; θ∗, [θ∗, θ

∗])

p(θ∗; θ∗, [θ∗, θ∗])
.

To rewrite this expression in a useful way we will need the following construction. Assume

that (θt)t starts at θ∗ and follows the usual drift-di�usion process, but that (θt)t is now

re�ecting at θ∗ and absorbing at θ∗ + ϵ. For θ ∈ [θ∗, θ
+ϵ), de�ne p̃(θ) as the probability that
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θt = θ, and de�ne p̃(θ∗ + ϵ) = 1−
� θ+ϵ
θ∗

p̃(θ)dθ. Then, for θ ∈ [θ∗, θ∗ + ϵ],

p(θ; θ∗, [θ∗, θ
∗]) = p̃(θ) + p̃(θ∗ + ϵ)p(θ; θ∗ + ϵ, [θ∗, θ

∗])

=⇒ A(θ∗ + ϵ)

A(θ∗)
=

p̃(θ∗ + ϵ)p(θ∗ + ϵ; θ∗ + ϵ, [θ∗, θ
∗])

p̃(θ∗) + p̃(θ∗ + ϵ)p(θ∗; θ∗ + ϵ, [θ∗, θ∗])
.

Now consider alternative non-decreasing drift functions µ̃ such that µ̃(θ) = µ(θ) for θ ∈
[θ∗, θ∗ + ϵ]. Note that decreasing µ̃|[θ∗+ϵ,θ∗] increases p(θ∗ + ϵ; θ∗ + ϵ, [θ∗, θ

∗]) and p(θ∗; θ∗ +

ϵ, [θ∗, θ
∗]) proportionally, without a�ecting p̃(θ∗ + ϵ) or p̃(θ∗), and hence it increases A(θ∗+ϵ)

A(θ∗)
.

Hence, in order to maximize A(θ∗+ϵ)
A(θ∗)

, it is optimal to take µ̃(θ) = µ(θ∗+ϵ) for all θ ∈ [θ∗+ϵ, θ
∗].

Taking the limit as ϵ→ 0, it follows that in order to maximize |∂H2(θ∗,θ∗)
∂θ∗

| at a certain value

of θ∗, it is optimal to take µ constant over [θ∗, θ
∗]. (For now, the optimal µ might be a

function of θ∗.)

Next we work with |∂H1(θ∗,θ∗)
∂θ∗

|. Take ϵ > 0 and write

V̂1(θ∗; θ∗, θ
∗, c1, H1(θ∗, θ

∗)) = V̂1(θ∗; θ∗ − ϵ, θ∗, c1, H1(θ∗ − ϵ, θ∗))

H1(θ∗, θ
∗) = −

� θ∗

θ∗−ϵ
p(θ)c1(θ)dθ + p̂(θ∗ − ϵ)H1(θ∗ − ϵ, θ∗),

where p(θ) = p(θ; θ∗, [θ∗ − ϵ, θ∗]) and the process is assumed to be re�ecting at θ∗, and

p̂(θ∗ − ϵ) = 1−
� θ∗
θ∗−ϵ p(θ)dθ. Rearranging,

H1(θ∗ − ϵ, θ∗)−H1(θ∗, θ
∗) =

� θ∗

θ∗−ϵ
p(θ)(c1(θ) +H1(θ∗ − ϵ, θ∗))dθ

Let p̃(θ; θ∗, [θ∗, θ
∗]) be the probability of θt being equal to θ in the future, when the initial state

is θ∗, the disputed region is [θ∗, θ
∗], and the stochastic process governing (θt)t is re�ecting at

θ∗ and θ
∗. Then, for θ ≥ θ∗, p(θ) =

(
1− p̂(θ∗ − ϵ)−

� θ∗
θ∗−ϵ p(θ)dθ

)
p̃(θ; θ∗, [θ∗, θ

∗]). It can be

shown that
� θ∗
θ∗−ϵ p(θ)dθ ∈ O(ϵ2) for small ϵ, and of course p̂(θ∗) = 1. So, taking ϵ→ 0,

|∂H1(θ∗, θ
∗)

∂θ∗
| = |p̂′(θ∗)|

� θ∗

θ∗

p̃(θ; θ∗, [θ∗, θ
∗]))(c1(θ) +H1(θ∗, θ

∗))dθ.

(p̂′(θ∗) is only a left-derivative as p̂(θ) is unde�ned for θ > θ∗.)

Now note that, for any ϵ > 0, there is a �xed K ∈ (0, 1) such that p̃(θ; θ∗, [θ∗, θ
∗]) =

Kp̃(θ; θ∗ + ϵ, [θ∗ + ϵ, θ∗]) for all θ ∈ [θ∗ + ϵ, θ∗]. Hence, denoting p̃(θ) = p̃(θ; θ∗, [θ∗, θ
∗]),

|∂H1(θ∗+ϵ,θ∗)
∂θ∗

|
|∂H1(θ∗,θ∗)

∂θ∗
|

=
|p̂′(θ∗ + ϵ; θ∗ + ϵ)|

|p̂′(θ∗; θ∗)|

� θ∗
θ∗+ϵ

p̃(θ)(c1(θ) +H1(θ∗ + ϵ, θ∗))dθ� θ∗
θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

� θ∗
θ∗
p̃(θ)dθ� θ∗

θ∗+ϵ
p̃(θ)dθ

. (12)
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Note that by construction
� θ∗
θ∗
p̃(θ)dθ = 1. Then second factor in Equation 12 is approxi-

mately

1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗)) +
� θ∗
θ∗
p̃(θ)|∂H1(θ∗,θ∗)

∂θ∗
|� θ∗

θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

=1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗)) + |∂H1(θ∗,θ∗)
∂θ∗

|� θ∗
θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

=1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗)) + |p̂′(θ∗)|
� θ∗
θ∗
p̃(θ; θ∗, [θ∗, θ

∗]))(c1(θ) +H1(θ∗, θ
∗))dθ� θ∗

θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

=1− ϵ
p̃(θ∗)(c1(θ∗) +H1(θ∗, θ

∗))� θ∗
θ∗
p̃(θ)(c1(θ) +H1(θ∗, θ∗))dθ

− ϵ|p̂′(θ∗)|.

This expression equals 1− ϵp̃(θ∗)− ϵ|p̂′(θ∗)| if c1 is constant, and is strictly larger otherwise.

Since c1 appears nowhere else in Equation 12, it follows that in order to make the RHS of

Equation 12 as small as possible it is optimal to take c1 constant. Next, we will argue brie�y

that it is optimal to also take µ constant. Denoting H1(θ∗, θ
∗) = V1(θ∗), note that we are

e�ectively trying to minimize
V ′′
1 (θ∗)

V ′
1(θ∗)

. Recall that V1(θ) must solve Equation 1:

c1 + γV1(θ) = µ(θ)V ′
1(θ) +

σ2

2
V ′′
1 (θ),

with boundary conditions V1(θ
∗) = V ′

1(θ
∗) = 0. Now suppose µ is not constant, so strictly

increasing somewhere. Construct a new pair of parameters (c̃1, µ̃) as follows: µ̃(θ) = µ(θ∗)

for all θ ∈ [θ∗, θ
∗] and c̃1(θ) = c1(θ) + (µ̃(θ) − µ(θ))V ′

1(θ) for all θ ∈ [θ∗, θ
∗].32 Then,

by construction, the solution to Equation 1 is the same under these new parameters; in

particular
V ′′
1 (θ∗)

V ′
1(θ∗)

. In addition, µ̃ is non-decreasing (in fact constant), and c̃1 satis�es c̃1(θ) ≥
c̃1(θ∗) = c1(θ∗) for all θ, with the inequality being strict at some θ. But then, by our previous

discussion, if we instead take as our parameters (č1, µ̌) by č1 ≡ 1 and µ̌ = µ̃, we will attain

a lower value of
V ′′
1 (θ∗)

V ′
1(θ∗)

.

The next step of the proof is to prove, under the assumption of constant c1, c2 and µ,

that the tightest case is when µ = 0.

Let V (x) be de�ned as the solution to the ODE 1 + V (x) = µV ′(x) + σ2

2
V ′′(x), with

the initial conditions V (0) = V ′(0) = 0. Note that this is the same as Equation (1) if we

normalize c ≡ 1, γ = 1.

Disregarding the initial conditions, this ODE has a constant solution V ≡ −1, and the

homogeneous ODE has general solution k1e
α1x + k2e

α2x, where α1 and α2 are the solutions

32The function V ′
1 used here is the solution to Equation 1 under the original parameters (c1, µ).
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to the quadratic equation 1 = µα + σ2

2
α2, i.e., α1 =

−µ+
√
µ2+2σ2

σ2 , α2 =
−µ−

√
µ2+2σ2

σ2 .

Since we require V (0) = −1 + k1 + k2 = 0 and V ′(0) = k1α1 + k2α2 = 0, it follows that

k1 =
α2

α2−α1
and k2 = − α1

α2−α1
. Then

V (x) = −1 +
α2

α2 − α1

eα1x − α1

α2 − α1

eα2x.

Write Vµ(x) to make the dependence of V on µ explicit. Then what we aim to show is

that, if µ > 0, then
V ′
µ(x)

V ′
0(x)

is decreasing, and if µ < 0, then
V ′
µ(x)

V ′
0(x)

is increasing.

Normalize σ2 = 2. (We can do this by means of two changes of variables, rescaling

time and the state space, respectively.) Then α1,2 =
−µ±

√
µ2+4

2
. For the sake of simplifying

further, write µ̃ = µ
2
. Then α1,2 = −µ̃ ±

√
µ̃2 + 1. Finally, make the following change of

variables: y = ex, and denote V̂ = V ◦ ln. Then

V (x) = V (ln(y)) = V̂ (y) = −1 +
α2

α2 − α1

yα1 − α1

α2 − α1

yα2 .

We then aim to show that if µ > 0, then
V̂ ′
µ(y)

V̂ ′
0(y)

is decreasing for y ≥ 1, and that if µ′ < 0,

then
V̂ ′
µ′ (y)

V̂ ′
0(y)

is increasing for y ≥ 1. We will use the following

Lemma 9. Let f, g : [a, b] → R be measurable positive functions such that f(x)
g(x)

is increasing

for x ∈ [a, b]. De�ne F,G : [a, b] → R as F (x) =
� x
a
f(s)ds, G(x) =

� x
a
g(s)ds. Then F (x)

G(x)
is

increasing for x ∈ [a, b].

Proof. Write f(x)
g(x)

= ρ(x), and F (x)
G(x)

=
� x
a g(s)ρ(s)ds� x

a g(s)ds
. If x′ > x, then

F (x′)

G(x′)
=

� x′
a
g(s)ρ(s)ds� x′
a
g(s)ds

=

� x
a
g(s)ρ(s)ds+

� x′
x
g(s)ρ(s)ds� x

a
g(s)ds+

� x′
x
g(s)ds

.

Then F (x′)
G(x′)

≥ F (x)
G(x)

, since
� x′
x g(s)ρ(s)ds
� x′
x g(s)ds

≥ ρ(x) ≥
� x
a g(s)ρ(s)ds� x

a g(s)ds
.

By this Lemma, it is enough to prove that if if µ > 0, then
V̂ ′′
µ (y)

V̂ ′′
0 (y)

is decreasing for y ≥ 1,
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and that if µ′ < 0, then
V̂ ′′
µ′ (y)

V̂ ′′
0 (y)

is increasing for y ≥ 1. Now note that

V̂0(y) = −1 +
y

2
+

1

2y
, V̂ ′′

0 (y) =
1

y3

V̂ ′
µ(y) =

α1α2

α2 − α1

yα1−1 − α1α2

α2 − α1

yα2−1 ∝ yα1−1 − yα2−1

V̂ ′′
µ (y) ∝ (α1 − 1)yα1−2 − (α2 − 1)yα2−2

V̂ ′′
µ (y)

V̂ ′′
0 (y)

∝ (α1 − 1)yα1+1 − (α2 − 1)yα2+1

We can verify that, if µ > 0, α1 ∈ (0, 1) and α2 < −1, so α1 − 1 < 0, α1 + 1 > 0, α2 − 1 < 0

and α2 + 1 < 0. Hence
V̂ ′′
µ (y)

V̂ ′′
0 (y)

is decreasing in y. Similarly, if µ < 0, α1 > 1 and α2 ∈ (−1, 0),

so α1 − 1 > 0, α1 + 1 > 0, α2 − 1 < 0 and α2 + 1 > 0. Hence
V̂ ′′
µ (y)

V̂ ′′
0 (y)

is increasing in y. This

�nishes the proof.

Finally, note that in the case where c1 ≡ c2 ≡ 1 and µ ≡ 0, the result is (weakly) trivially

true, as H1(θ∗, θ
∗) ≡ H2(θ∗, θ

∗) so that
| ∂H1(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
≡ 1. It follows from our arguments that,

if c1 and c2 are strictly increasing (decreasing), then
| ∂H1(θ∗,θ

∗)
∂θ∗

|

| ∂H2(θ∗,θ∗)
∂θ∗

|
will be strictly increasing

instead.
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