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Abstract

This paper models the diffusion of verifiable information on a network pop-

ulated by biased agents. Some agents, who are exogenously informed, choose

whether to inform their neighbors. Informing a neighbor affects her behavior,

but also enables her to inform others. Agents cannot lie; they can, however,

feign ignorance. The model yields three main results. First, unless a large set of

agents is initially informed, learning is incomplete. Second, full learning is more

likely for moderate than for extreme states of the world. Third, when agents

are forward-looking, concerns about learning cascades lead to an endogenous

division of the population into like-minded groups that do not communicate

with each other.

JEL codes: D83, D85

Keywords: Verifiable information; Networks; Social learning; Strategic commu-

nication; Learning cascades

1 Introduction

The Internet has given us unprecedented access to endless sources of information, and

made it easier to share this information with others through social networks. Never-

theless, wild differences of opinion persist around politically or emotionally charged
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topics, even those for which definitive evidence-based answers are available. For ex-

ample, significant minorities of Americans believe that climate change is not real or

not man-made (Leiserowitz et al., 2019; Howe et al., 2015; Funk et al., 2015); that

vaccines (Frankovic, 2021; Moore, 2015; Omer et al., 2012) or bio-engineered foods

(Funk et al., 2015) are dangerous; or that Barack Obama was not born in the United

States (Morales, 2011; Jardina and Traugott, 2019). These and similar examples bear

out two stylized facts. First, beliefs about charged issues are partly driven by political

affiliation or other “deep” preferences, with self-identified liberals and conservatives

often having divergent views (Frankovic, 2021; Dimock et al., 2015). Second, mis-

conceptions about a substantive issue are accompanied by misconceptions about the

existing body of evidence: the number of climate change skeptics is similar to the

number of people who believe that scientific opinion is divided on the issue (Funk et

al., 2015). Thus, while biases may play a role, failures to converge to a common truth

appear to be tied to breakdowns in the transmission of information. If such break-

downs are possible even in these stark examples, the hope of reaching a consensus

is even weaker when it comes to politically charged debates that have no clear-cut

answer—for instance, the effects of minimum wage increases, healthcare reform, or

gun control.

In this paper, I propose motivated communication as a cause of persistent dis-

agreement in social discourse, and aim to characterize the extent to which it can

limit the diffusion of information. I define motivated communication as the act of

strategically using valid evidence to support one’s position, even if said position was

chosen for self-serving reasons. For instance, a climate change skeptic may cite scien-

tific studies—perhaps outliers—to support her claims, but her position may be better

explained by the fact that she works for an oil company.

More concretely, this paper studies a model of information transmission under-

pinned by the following broad assumptions, motivated by our setting. There is a large

population of agents connected by a social network. Information is verifiable and re-

producible, but initially only held by some agents. Agents have differing biases, but

are able to discuss and share objective evidence if they wish to do so. When deciding

what information to share with their acquaintances, they are driven by the desire to

bring the views of others into alignment with their own.

Here is a concrete example. The citizens of a country in political turmoil share

news on an online social network. Citizens differ in their ulterior motives: some are
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connected with the ruling party or are favored by its policies, while others are routinely

mistreated. In addition, citizens may have hard information about the quality of the

regime (e.g., a link to a video showing the president taking bribes) acquired directly

from Nature—say, from reading a news website—or from other agents. Citizens have

random opportunities to talk to others, and decide what links to share; a link that

is shared can, in turn, be passed on by the recipient. Citizens want to bias others

towards their own views, either for public or private reasons—for example, to topple

the government, or so that they can spend time with their friends at a rally.

Since information consists of links to a verifiable source, agents cannot lie, but

their biases tempt them to lie by omission, that is, to only share evidence that bolsters

their position. For example, government supporters will avoid mentioning corruption

scandals even if they know the allegations to be true. This self-censorship stifles the

free diffusion of information. Moreover, in the face of this behavior, the beliefs of

biased agents who remain ignorant will end up reinforcing their biases: a dissident

will think her position vindicated if she meets a government supporter who fails to

produce evidence supporting the government.

The model yields three main insights. The first one concerns the extent of infor-

mation diffusion, that is, how close the population comes to learning the state of the

world. I show that full diffusion is in general possible only when the set of initially

informed agents contains agents with diverse biases. More precisely, if the true state

of the world is high, then the truth spreads to all agents only if some high-bias agents

are initially informed, and vice versa.

The second insight concerns the kind of information that proliferates. I show

that full diffusion is more likely to obtain when the state of the world is moderate—

roughly speaking, when the realized state is close to the mean of its distribution. More

precisely, if the state of the world is symetrically distributed around 0, with support

[−1, 1], there is an interval I = (−ε, ε) ⊂ [−1, 1] such that, if the state of the world

is in I, then everyone will learn this as long as any one agent is initially informed.

On the other hand, extreme states of the world, far from 0—paradoxically, the ones

that would be more valuable to learn—will remain less known. (When the state is

extreme, learning is more valuable because, so long as an agent remains uninformed,

her actions will be badly mismatched with the true state.) The logic behind this result

is that extreme information is only communicated in a predictable direction, which

stifles its propagation: for instance, when the state is high, high-bias agents inform
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lower-bias agents to increase their beliefs, but low-bias agents are unlikely to pass on

this information. On the other hand, news of a moderate state can cycle through the

population by traveling in both directions. This implies that misinformation is more

likely to persist around issues for which a conclusive answer would shift everyone’s

posterior beliefs in the same direction, rather than those for which the truth lies in the

middle. More generally, it means that the existence of moderate evidence promotes

the diffusion of information, so that conversely, if all news are extreme—or if even

balanced news can always be divided into small, good-or-bad nuggets to be shared

selectively—communication becomes more difficult.

The third insight concerns the structure of information diffusion when learning is

incomplete. I show that, when the network is densely connected, failures of informa-

tion diffusion are driven by concerns about learning cascades. These concerns lead to

an endogenous division of the population into like-minded groups, or segments, that

communicate with each other only in one direction. The intuition here is that, in

a dense network—that is, a network in which every agent has a number of friends,

some with similar biases—myopic incentives would drive agents to share their infor-

mation with at least some neighbors in such a way that everyone would eventually

become informed. However, as forward-looking agents understand the implications

of their behavior, in equilibrium, they choose not to inform neighbors who are close

in bias but who would then share information with the wrong group. Hence, in dense

networks, higher sophistication leads to less information being transmitted. In sparse

networks, the effect of sophistication can go either way: forward-looking agents may

fear learning cascades, but they may also seek alliances of convenience, that is, they

may be willing to use a disliked neighbor as a conduit to reach a like-minded player

further down the network.

This paper contributes to a growing literature on strategic communication on

networks. Like the present paper, the prototypical model in this literature (Galeotti et

al., 2013) considers biased agents on a network who choose whether to communicate;

each agent has a different bias and wants everyone’s actions to match her own state-

contingent bliss point. However, the most common variant of this framework (Galeotti

et al., 2013; Hagenbach and Koessler, 2010; Dewan et al., 2015; Dewan and Squintani,

2018) assumes that communication is non-verifiable (cheap talk) and that there is a

single round of communication, that is, agents are not allowed to pass on signals that

other players have shared with them. In contrast, in this paper, agents exchange
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hard evidence and multiple rounds of communication are possible. As a result, more

information is transmitted in my setting: while cheap talk is informative only when

the difference between the agents’ biases is small enough (Crawford and Sobel, 1982),

verifiable communication gives rise to one-sided revelation strategies, whereby agents

reveal convenient facts and hide the rest. More importantly, the learning cascades

that are at the heart of my results are, by design, absent from the aforementioned

papers.

Within this literature, the two papers closest to this one are Squintani (2019) and

Bloch et al. (2018). They both consider verifiable messages that can be re-shared,

but differ from this paper in other respects. Squintani (2019) aims to characterize

optimal and/or pairwise stable networks, and finds conditions under which these

networks are either a star or an ordered line. In contrast, I take the network as given

and characterize the equilibrium for a large class of networks. Another difference is

that, in Squintani (2019), there is a single decision-maker whose beliefs all agents are

concerned with; this assumption limits the complexity of learning cascades, as there

is no trade-off between informing wanted and unwanted agents. In contrast, in this

paper, each agent cares about the beliefs of all other agents.

In Bloch et al. (2018), there are two types of players: unbiased types that want to

match the state, and biased types whose bliss point is independent of the state. In

contrast, I consider agents of differing biases who care equally about the state. The

main difference, however, lies in the communication protocol. In Bloch et al. (2018),

agents share information with either every neighbor, or none; and information-sharing

strategies are static (that is, players cannot adjust their messages depending on when

they are informed, or by whom). In contrast, I assume agents can share information

with only some of their neighbors, and their strategies are allowed to depend on the

history (and they typically do).

More broadly, the paper is related to the social learning literature, in which agents

directly observe beliefs and update naively (DeMarzo et al., 2003; Golub and Jackson,

2010), or they learn by observing others’ actions (Banerjee, 1992; Smith and Sørensen,

2000; Acemoglu et al., 2011). In either case, the choice of what to transmit to others

is typically devoid of strategic considerations. A general lesson from this paper is

that, when agents are patient, use information differently and care about each others’

actions, concerns about spreading information to unwanted agents dampen learning.

Similar insights may extend to a model of observational learning, such as Acemoglu
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et al. (2011), with strategic considerations.

The paper is also connected to a literature on explanations for the persistence of

disagreement. For example, agents may interpret information differently (Acemoglu

et al., 2016); they may be unable to separate others’ priors from their information

(Sethi and Yildiz, 2012); the acquisition and transmission of information may be

costly (Calvó-Armengol et al., 2015; Perego and Yuksel, 2016); or agents’ beliefs may

be slightly misspecified (Frick et al., 2020).

Finally, in the two-player case, the communication game in this paper is similar to

existing models of communication with verifiable information (Milgrom and Roberts,

1986; Glazer and Rubinstein, 2006). A common result in this literature (Milgrom and

Roberts, 1986; Hagenbach et al., 2014) is that unraveling leads to full revelation. In

this paper, there is only partial revelation because the amount of information held

by the sender is uncertain, which allows a sender with “bad” information to feign

ignorance without much being inferred by the receiver. My model of verifiable com-

munication differs more markedly from the Bayesian persuasion literature (Gentzkow

and Kamenica, 2011), in which the sender is allowed to commit to a revelation strat-

egy before learning the state. In my setting, this assumption would be unnatural, as

the sender knows her available information before meeting the next receiver.

The paper proceeds as follows. Section 2 presents the model. Section 3 considers

the case of myopic agents as a benchmark. Section 4 analyzes the case of forward-

looking agents. Section 5 discusses the results. Appendix A contains additional

analysis of the model in Section 4. Appendix B contains all the proofs.

2 The Model

Preliminaries

There is a set N = {1, . . . , n} of players connected by an undirected network G ⊆
N ×N . Each agent i has a type bi ∈ R denoting her bias. Without loss of generality,

we assume b1 ≤ . . . ≤ bn. We denote the set of i’s neighbors by Ni.

There is a state of the world θ that is fixed over time, and distributed according

to a c.d.f. F with support contained in [−1, 1] and mean 0. At the beginning of the

game, Nature draws θ and shows it to a subset S of players with probability γ(S),
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where γ : 2N → [0, 1] is a probability distribution.1 We denote by γ0 = 1 − γ(∅)
the probability that Nature informs a non-empty set of players, and assume γ0 ∈
(0, 1). The assumption that γ0 < 1 guarantees that full unraveling in the style of

Milgrom and Roberts (1986) cannot obtain, as the players do not infer too much

from being uninformed. It can be taken as reflecting a world in which opportunities

to communicate strategically with neighbors do not arrive too often and are thus

somewhat unexpected.

Later in the paper we will vary γ0 as other parameters are held constant. This

should be taken to mean that γ(S)|S 6=∅ varies proportionally with γ0.

Actions

After Nature informs the players in S, a game is played over discrete and infinite

time: t = 0, 1, . . . . In each period t, agent i chooses an action ait. i’s utility function

is

Ui(θ, ai, a−i) = −
∞∑
t=0

δt

[∑
j∈N

(ajt − θ − bi)2
]
.

This functional form, which is common in the literature (Galeotti et al., 2013), ensures

that i’s optimal action at time t is the expected value of θ+ bi given her information;

and, moreover, that i wants to induce each player j 6= i to play according to i’s own

bias, that is, i wants to induce ajt = θ + bi, whereas j would choose ajt = θ + bj if

fully informed.2 The discount factor δ ∈ (0, 1) is the same for all agents.

Communication

In each period t, with probability α ∈ (0, 1), Nature creates an opportunity to com-

municate. More precisely, Nature picks a player, each with probability α
n
, as the

potential sender; with probability 1 − α, no one is chosen. If i is chosen, she is

given an opportunity to message a neighbor j; Nature picks each neighbor to be the

1All the results go through if Nature instead shows a noisy signal s of θ, as long as all informed
players see the same realization. The conditional expectation E(θ|s) would then take the role of θ
in the rest of the paper.

2The assumption that i’s own action and the actions of other players have the same weight in i’s
utility function is immaterial to the results. Heterogeneous weights over the actions of other players
can be incorporated into the model without complications.
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potential receiver with probability 1
|Ni| .

3 When i meets j, i can either share θ (if

she is informed) or share nothing, potentially as a function of her private history:

m(θ, i, j, t, hti) = 1 or 0, where 1 denotes a message that reveals θ and 0 denotes no

message. If j receives θ she learns θ as well as the fact that i sent the message at time

t, but if i shares nothing, j does not know that a meeting has occurred. In particular,

meetings are one-way: when i has an opportunity to talk to j, j is not able to talk

back to i. We also allow i to meet j even if j is already informed.

Intuitively, we can imagine i having a one-way meeting with j to mean that i has

“logged on” to the social network and considered messaging j, but j is unaware of

this unless she gets a message. In other settings (for example, face-to-face meetings)

it would be more natural to assume that meetings are two-way. The only difference

this would introduce is that j’s posterior would jump when she meets another player

i who sends no message, but would stay constant otherwise. In contrast, with one-

way meetings, posteriors evolve independently of when meetings happen (since j’s

posterior under ignorance responds to the expected number of meetings in which

she’s been the receiver), which simplifies the analysis.

Finally, we assume that actions ait are not observable by other players and payoffs

are not observable, so j can only learn from i through i’s messages. The ramifications

of learning from other players’ behavior (Banerjee, 1992) or outcomes (Wolitzky,

2018) have been studied elsewhere; they are orthogonal to the point of this paper.

Timing

The game proceeds as follows. Before period 0, Nature determines the value of θ and

informs a set of players S. Then, at each time t ≥ 0, Nature generates a meeting (or

not); a message is sent (or not); and the players choose their actions ait.

Network Properties

A path is a sequence of players such that every two consecutive elements share a

link. A network is connected if there is a path between any two players. A network

is complete if there is a direct link between any two players. A forest is a network

containing no cycles. A tree is a connected forest.

3We may allow meeting probabilities that vary across links, as well as multiple meetings in the
same period, without substantially altering the results.
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Given an open interval I = (a, b) ⊆ [b1, bn], we define an interval (NI , GI) of the

graph (N,G) as the induced subgraph with vertex set NI = {i ∈ N : bi ∈ I}. Given

a network (N,G) and a value of γ0 > 0, we say (N,G) is well-connected if all its

intervals of size 1−γ0
2−γ0 are nonempty and connected.

Remark 1. If (N,G) is well-connected, then it is connected, and all its intervals of

size larger than 1−γ0
2−γ0 are connected.

The concept of well-connectedness, which will be central to our results, captures

the notion that players with close biases are able to share information with each other

without needing to use highly dissimilar agents as intermediaries. While a stronger

condition than connectedness, it is more likely to hold if links between ideologically

similar agents are disproportionately common, that is, if the network displays ho-

mophily (McPherson et al., 2001).

Equilibrium Concept

Our solution concept is sequential equilibrium. We denote a general strategy profile

by σ = (a(θ, i, t),m(θ, i, j, t, hti)), where a(θ, i, t) denotes the action chosen by agent i

at time t, given her observation of θ ∈ [−1, 1]∪{∅} (θ = ∅ denotes that i is uninformed

at time t);4 and m(θ, i, j, t, hti) is the probability that i shares her information with

agent j if able to, conditional on her observation of the state θ and her history hti,

with the restriction that m(∅, ·) ≡ 0, i.e., no message is sent if i is uninformed.5

We denote the beliefs held by an agent i at a history hti by µ(i, t, hti). Since we

will mainly be interested in i’s beliefs about θ, rather than about the entire history of

play, we also define p(θ, i, t) as the probability that player i is informed at the end of

period t, if the true state is θ. (In general p(θ, i, t) depends on θ because the players’

communication strategies condition on the state.) We denote the limit of p(θ, i, t) as

t→∞ by p(θ, i). In addition, we denote i’s expectation about θ under ignorance by

θ(i, t), i.e., θ(i, t) =
∫ 1
−1 θ(1−p(θ,i,t)dF (θ)∫ 1
−1(1−p(θ,i,t))dF (θ)

, and we denote its limit as t→∞ by θ(i).6

We can immediately solve for the players’ equilibrium actions: it follows from the

definition of the utility functions that each agent i should optimally match her action

4In principle ait could depend on hti, but it will depend only on θ, i and t in any equilibrium,
since ait is not observed by anyone else, and (θ, i, t) is a sufficient statistic for i’s posterior.

5Unlike ait, mit may depend on hti, since hti may contain information about who else is informed.
6p(θ, i) is well-defined since p(θ, i, t) ≤ 1 is weakly increasing in t. θ(i) is pinned down by Bayes’

rule, as the assumption γ0 < 1 guarantees that i remains uninformed with probability at least 1−γ0.
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ait to the state of the world—or her expectation of it, if uninformed—plus her bias.

Remark 2. In any equilibrium, ait = θ+bi if i is informed at time t, and ait = θ(i, t)+bi

otherwise.

3 Benchmark: Myopic Preferences

As a prelude to analyzing the full model, we solve the case of myopic preferences

(δ = 0) as a benchmark. The analysis is much simpler in this case: under myopic

preferences, when i meets j, i cares only about j’s current action, as opposed to the

current and future actions of all other players. Hence, i shares θ with j at time t if

and only if doing so increases Eit(−(θ + bi − ajt)2|θ, hti).
There are two reasons for studying the myopic case. First, the assumption of

myopic preferences is descriptively accurate in some applications. Agents may care

about the private effects of actions with public consequences: for example, if i and j

are parents with children in the same school, i may want j to vaccinate his children

so that i’s children are safe while they are near j’s. Similarly, in the context of a

protest, i may want to change j’s mind so that j will attend a rally with i; i may

care more about the consumption value of the rally than its political consequences.

Alternatively, agents may be truly myopic and fail to anticipate the downstream

consequences of their messages—a real concern in such a complex model. Finally, in

practice, communication is not always instrumental; instead, agents may be simply

driven by a desire to “win arguments”.

Second, the myopic case serves as an instructive bridge between my setting and the

extant literature on strategic communication on networks, most of which assumes a

single round of communication. In a model with myopic preferences and multi-round

communication, learning cascades are possible but the players do not take them into

account—rather, they behave as if the current round of communication were the last.

Proposition 1 characterizes the agents’ equilibrium behavior under myopic prefer-

ences.

Proposition 1 (Myopic Equilibrium). Assume that δ = 0. In any equilibrium, if i

is informed at time t, m(θ, i, j, t) = 1 if either θ > θ(j, t) and 2(bj − bi) < θ − θ(j, t),

or θ < θ(j, t) and 2(bi − bj) < θ(j, t)− θ.

In addition, if F admits a continuous density f and α is low enough, then the equi-

librium is unique.

10



The first part of the Proposition reflects the following intuition: if i can inform

j at time t, she faces a choice between revealing θ and letting j retain his posterior

under ignorance, which has mean θ(j, t). If bi > bj, i will want to reveal θ when

doing so increases j’s action. But θ may also be shared when it has the opposite

effect if |bi − bj| is small relative to |θ − θ(j, t)|: in that case, i’s incentive to bias j

is trumped by her desire to prevent him from choosing an action badly mismatched

with the state of the world. An important special case is if θ = 1 and γ0 is close to 0

(that is, information is scarce, which guarantees that posteriors under ignorance are

close to 0): then i informs j if bj < bi + 1
2
. Conversely, for θ = −1, i informs j if

bj > bi− 1
2
. Finally, taking α to be low enough guarantees equilibrium uniqueness by

ensuring that θ(i, t) is not too sensitive to the strategies of other players in period t.

Corollary 1 characterizes the extent of information transmission resulting from

these equilibrium strategies, in two instructive cases.

Figure 1: p(θ, j, t) on the equilibrium path for n = 4, j = 2, θ ∼ U [−1, 1], δ = 0,
γ0 = 0.75, α = 0.3, and bi+1 − bi > 1

2−γ0 for all i
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Corollary 1.

(a) Assume that δ = 0. Suppose (N,G) is a well-connected network, and the state is

binary: P (θ = 1) = P (θ = −1) = 0.5. Then there is full diffusion: p(θ, i) = γ0 for

all θ, i in any equilibrium.
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Figure 2: Posterior beliefs for i = 1, 2, 3, 4

(a) p(θ, i,∞)
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(b) On the other hand, suppose (N,G) is such that bi+1−bi > 1
2−γ0 for all i, i is linked

to i+ 1 for all i, and 1 and n are linked to everyone. Then, in any equilibrium,

(i) there is full diffusion for moderate states: θ(1) < θ(n), and p(θ, j) = γ0 for

θ ∈
(
θ(1), θ(n)

)
.

(ii) There is partial diffusion for extreme states:

for θ < − γ0
2−γ0 , j is informed iff S is nonempty and min(S) ≤ j. For θ > γ0

2−γ0 ,

j is informed iff S is nonempty and max(S) ≥ j.

The intuition behind Corollary 1 is as follows. If the network is well-connected,

then for every player i, her closest neighbors—in either direction—are close enough

that she would like to inform them no matter what the state is. But the receivers

will also find close neighbors to inform, and so on. Thus information spreads through

the whole network.

Part (b) presents a contrasting case in which players are separated by large bias

gaps (note that, if bi+1 − bi >
1

2−γ0 > 1−γ0
2−γ0 for any i, the network cannot be well-

connected). In this case, information is only shared in a self-serving fashion: i > j

only informs j in order to increase her posterior belief, and vice versa. Both partial

and full diffusion are possible, depending on the state. Figure 1 illustrates this case in
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Figure 3: Myopic transmission with large gaps
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a complete 4-player network. The graph shows player 2’s probability of learning the

state over time. This probability is increasing in t, but converges to different values

depending on θ. If θ is low, only player 1 will tell her; if θ is high, only players 3 and 4

will tell her; if θ is intermediate, she will be told no matter who is initially informed.

The transmission of moderate information in the case of large gaps is enabled by

the following fact: over time, the posteriors under ignorance of extreme types tend

to reinforce their biases. In particular, θ(n, t) > θ(1, t) and θ(n, t) is increasing in t,

while θ(1, t) is decreasing in t, as shown in Figure 2b. The reason is that a low-bias

player, for instance, expects others to send her messages that will drive her beliefs

up, and so expects to learn the state with higher likelihood if it is high (Figure 2a).

If she is not informed, she guesses that θ is low and that is why no one has told her.

In particular, this means that n’s long-run mean posterior under ignorance is

higher than 1’s: θ(n) > θ(1). When θ lies between these two values, every player

wants to share θ with both 1 and n, in order to moderate their actions. And once 1

and n are both informed, they inform everyone else: for any player i between them,

either 1 or n will be willing to tell i. This is represented diagramatically in Figure 3.

Finally, note that the variability of posterior beliefs increases with information

abundance: the higher γ0 is, the more uninformed players can infer from their lack of

information, which prompts other players to share more values of θ. As a result, full

diffusion is attained in the limit as γ0 → 1, due to an argument related to the classic

unraveling result under verifiable communication (Milgrom and Roberts, 1986). This

is the subject of Corollary 2.
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Corollary 2. As γ → 0, p(θ, i) →|| ||∞ 0 and θ(i) → 0 for all i. Conversely, assume

(N,G) is such that 1 and n are linked to everyone, and F has full support in [−1, 1].

Then, as γ0 → 1, p(θ, i)→|| ||1 1 for all i.

4 Forward-Looking Players

Learning Cascades

We now consider the case of forward-looking players who care about the future actions

of the entire population. Two new considerations appear, both related to learning

cascades. First, an agent i may want to inform j, even if this negatively affects i’s

payoff from j’s action, so that j can then inform a third player k. Second, i may

want to hide information from j, even when it improves j’s action, to prevent j from

informing k.

These incentives are illustrated in Figures 4 and 5. In Figure 4, we assume that

(b1, b2, b3) = (0, 1, 1.6), γ({2}) = γ0 (only player 2 may be initially informed), and

γ0 > 0 is small. Suppose θ = 1 is realized and 2 is informed. Clearly, if 3 becomes

informed, he will inform 1. While 2 has a myopic incentive not to inform 3, she does

wants to inform 1, and the latter incentive dominates. Hence, 2 informs 3.

Figure 4: Learning cascades encourage communication

2 3 1

In Figure 5, assume that (b1, b2, b3) = (0, 0.4, 0.8); γ({1}) = γ0 is small; and θ = 1

is realized. Then agent 1 has a slight incentive to inform 2, and 2 has a slight incentive

to inform 3, but 1 is opposed to 3 becoming informed. Hence, if 1 were myopic, she

would inform 2; but, being far-sighted, she chooses not to.

Figure 5: Learning cascades discourage communication

1 2 3

These examples show that learning cascades may result in either more or less

communication. However, there is an asymmetry between the two. In Figure 4, the

result depends on 2 not being linked to 1 (as otherwise 2 could message 1 directly and
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bypass 3); in Figure 5, the result is robust to adding links. This insight applies more

broadly. In a sparse network, the first motive can dominate, as in order to reach far-

away agents a player may be forced to use undesirable neighbors as intermediaries. On

the other hand, in a dense network, the first motive vanishes (as direct communication

is possible) but the second remains, hence discouraging communication.

In arbitrary networks, the set of equilibria of the communication game with

forward-looking players may be very complex. For instance, there may be multiple

equilibria that are Pareto-ordered; multiple equilibria that are not Pareto-ordered;

equilibria in which two informed players want to be the first to send a message (pre-

emption), or the last (war of attrition); equilibria in which a player’s communication

strategy depends, even in the long run, on whom she has been informed by; and there

may not be a pure strategy equilibrium. A detailed discussion of these possibilities is

found in Appendix A.

What I show next is that, on a large class of networks, much of this complexity

can be ruled out. Indeed, a reasonable condition on the network structure (well-

connectedness), combined with assumptions about the communication protocol (mu-

tual observability and an activity rule) guarantee the existence of a tractable equi-

librium with several appealing properties. Briefly, this equilibrium is coalition-proof

in a certain sense; it is robust to small changes in the network structure; and the

extent of information diffusion it induces is uniquely determined and admits a simple

description.

Communication on Well-Connected Networks

Next, we define a class of strategy profiles that the equilibrium of the game will belong

to. For ease of exposition, assume a binary state of the world, with P (θ = −1) =

P (θ = 1) = 0.5.

A sequence of bias profiles b̂1 < b̂2 < . . . < b̂l ⊆ [b1, bn] partitions the population

N into segments M̂1, M̂2, . . . , M̂l+1, where M̂i = N[b̂i−1,b̂i)
.7 A strategy profile σ

is segmented if there are two sequences b1 < . . . < bk and b1 < . . . < bk, defining

respective partitions M1, . . . , Mk+1 and M1, . . . , Mk+1 such that:

(i) if θ = −1 and min(S) ∈ M i, then all the players in M i and higher segments

become informed with probability converging to 1, and all the players in lower

7Implicitly we have taken b̂0 = −∞, b̂l+1 =∞.
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segments remain uninformed.

(ii) if θ = 1 and max(S) ∈ M j, then all the players in M j and lower segments

become informed with probability converging to 1, and all the players in higher

segments remain uninformed.

The essence of a segmented strategy profile is that the players are split into groups

according to their biases. Groups share information internally, but information only

travels between groups in a single direction: when the state is high, higher-bias

groups only talk to lower groups, and the opposite happens if the state is low. This

is illustrated in Figure 6. There, if θ = 1 and 6 is initially informed, information

spreads in 6’s segment and the one below it, but not the one above it.

Figure 6: Outcome of a segmented strategy profile with S = {6} and θ = 1
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9

8

7
65
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3
2

1

M3

M2

M1

We call a segmented strategy profile natural if, for θ = 1 and γ0 low enough, each

i ∈ M l i prefers that all the members of M l above her be informed (compared to

none of them being informed), and for any higher segment M l′ (l′ > l) prefers that

no members of M l′ be informed (compared to all being informed); plus the analogous

condition for θ = −1.

Remark 3. For generic values of (b1, . . . , bn), there is a unique set of segments com-

patible with a natural strategy profile, determined recursively. For θ = 1,

(i) Start with player n who is in the top segment. For each i = n− 1, n− 2, . . . let

Ai = {i+ 1, . . . , n}, and let bAi be the average bias of players in Ai. Then, if

bAi < bi +
1

2
,
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i is in the top segment and we proceed to i− 1. If bAi > bi +
1
2
, the top segment

is {i+ 1, . . . , n}, and we denote i = n2. Proceed to step 2.

(ii) In step k (k ≥ 2), nk is in the k-th highest segment. For i = nk − 1, nk − 2, . . .

let Ai = {i + 1, . . . , nk}. If bAi < bi + 1
2
, i is in the k-th highest segment and

we proceed to i− 1. If bAi > bi + 1
2
, the k-th segment is {i+ 1, . . . , nk}, and we

denote i = nk+1. Proceed to step k + 1.

The algorithm for θ = −1 is analogous.

Before presenting our main results, we make two additions to the game defined

in Section 2. We say a communication game with an activity rule is one in which,

if—since the last time anyone was informed—each informed player has declined at

least K opportunities to inform each of her uninformed neighbors, then all meetings

stop forever.8 A communication game with mutual observability (and an activity

rule) is one in which, at all times, informed players automatically observe the set of

other informed players (and the status of the activity rule) in addition to knowing θ.9

Proposition 2 provides an equilibrium characterization for the communication

game with forward-looking players, mutual observability and an activity rule.

Proposition 2. Suppose that (N,G) is well-connected. Then, for generic (b1, . . . , bn),

for γ0 low enough and δ close enough to 1:

(i) The game has a unique equilibrium which is natural and in pure strategies.

8For γ0 low, the activity rule serves purely as an equilibrium selection device. Indeed, for every
equilibrium of the game with an activity rule, there is a payoff-equivalent equilibrium of the game
without it, as follows: while the activity rule would not have bound, play the same strategies.
After the activity rule would have bound, no more messages are sent. If anyone deviates after the
activity rule would have bound, play in the continuation as if this deviation had happened at the
last opportunity before the activity rule bound.

9Even without the assumption of mutual observability, players still make inferences about the
state of the game: e.g., if i informs j, j knows that i is informed and the activity rule has reset.
Moreover, informed players could share additional information through the timing of superfluous
messages, i.e., they could have have a “Morse code” that re-sends θ at specific times to indicate
information about the state of the game, or manipulates the timing of the first message to the
same effect. The extent of learning by informed players about the state of the game is thus hard to
control in general. Assuming mutual observability amounts to assuming that the players exogenously
receive all the information about the state of the game that they could stand to gain from such
communication, which makes any attempts at further learning irrelevant. See Appendix A for
partial results without this assumption.
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(ii) The threshold sequences satisfy bi+1 − bi ≥ 1
2

and bi+1 − bi ≥ 1
2

for all i. In

addition, if the biases b1, . . . , bn are roughly uniformly distributed in [b1, bn],

then bi+1 − bi ≈ 1 and bi+1 − bi ≈ 1 for all i.10

The intuition behind the equilibrium is as follows. Suppose that θ = 1 and n is

informed. Clearly n wants to tell everyone; if the network has enough links, everyone

becomes informed in the long run. Now suppose that n− 1 is informed. n− 1 wants

to inform all the lower-bias players, and also wants to inform n if bn − bn−1 is small

enough. Hence everyone becomes informed. If we look successively at lower-bias

players, eventually some n′ < n is reached that would rather not inform n. However,

n′ understands that telling anyone in {n′+1, . . . , n} leads to everyone learning, so the

choice is whether or not to inform the whole group. Since n′ is still willing to inform

most members of the group, everyone learns. Eventually, we reach some n′′ < n′

that would rather not inform {n′′ + 1, . . . , n}. {n′′ + 1, . . . , n} then becomes the top

segment. Now n′′ − 1 is happy to inform n′′ because she knows that information will

not flow upwards from n′′, so the process restarts. This is the logic giving rise to

natural strategies.

Proposition 2 has several implications. First, for any two networks (N,G), (N,G′),

both well-connected and defined on the same set of agents, the set of agents informed

in equilibrium is identical, because the natural segments are uniquely determined by

the distribution of biases. Therefore fine details of the network structure are irrelevant

in the long run, as long as the network has enough links to be well-connected.

Second, if we compare Proposition 2 to Corollary 1.(a), the clear takeaway is that

sophisticated agents transmit less information: even though their myopic incentives

would lead them to fully disseminate the state, in equilibrium, their behavior leads

to only partial diffusion whenever the distribution of biases is wide enough that there

are multiple segments. Instead, the results in Proposition 2 hew more closely to the

“large gaps” case of Corollary 1.(b), even when the bias gaps between neighbors are

small. The reason is that forward-looking agents think about informing groups, rather

than individuals, and large enough groups always have very different average biases.

Finally, there is a sense in which the equilibrium is coalition-proof. Say all the

informed players are members of a segment M̂l. By construction, these players have a

common interest in informing all the lower segments and none of the upper segments.

In equilibrium, this is exactly what they do.

10A rigorous statement is given in the Appendix.
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Figure 7: A pathological non-segmented equilibrium
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Under some additional conditions, the existence of a natural equilibrium can also

be guaranteed in the communication game without mutual observability or an activity

rule (see Proposition 5 in Appendix A). However, other equilibria may arise that

are not segmented or not natural. An example is given in Figure 7. Assume that

γ({2, 3}) > 0 is small and γ(S) = 0 otherwise, and θ = 1. The dividing red line

denotes that {5, 6, 7} communicate with each other, but {1, 2, 3, 4} would rather not

share information with them. That is, in a natural segmented equilibrium, {1, 2, 3, 4}
and {5, 6, 7} are separate segments.

Without mutual observability or an activity rule, there may be a non-natural

equilibrium in which 3 talks to 5 and 2 talks to 7, that is, {1, 2, . . . , 7} forms a single

segment. The reason is that, if 2 expects 3 to share information with the upper

segment, then 2’s own message to 7 has no marginal impact on long-run information

diffusion, and vice versa. Instead, such messages only have a short-term effect, which

may be positive: for instance, 3 expects that 7 will become informed through 2 sooner

than through the path 3→ 5→ 6→ 7, so informing 5 mainly amounts to informing

{5, 6} a bit sooner, which may be desirable. Similarly, if 2 has not yet been able to

inform 1, she may inform 7 to speed up transmission to 1.

There may also be a non-segmented equilibrium if we instead assume γ({4}) > 0

in the same example. The reason is that, counterintuitively, if 4 is the only informed

player it may be optimal to inform nobody. Indeed, although a priori 4 should be

more willing to share information than 2 and 3, she knows that informing either of

them will trigger a continuation that is bad for all of them. Finally, note that these
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equilibria are not ex post coalition-proof: {1, 2, 3, 4} would all prefer to move to a

natural segmented equilibrium, but cannot necessarily do so. In a sense, then, they

constitute a coordination failure.

Such pathological equilibria rely on the players’ uncertainty about who else is

informed, or about whom other informed players will inform. Mutual observability

removes the first kind of uncertainty, while an activity rule removes the second by

allowing the players to “lock in” a desirable information distribution by staying silent

for a number of periods.

Diffusion of Moderate States

For the sake of tractability, Section 4 has so far focused on the case of a binary

state. We now discuss the case of a continuous state, and recover results regarding

the diffusion of moderate states similar to those in Section 3.

Assume now that F admits a density f , symmetric around 0 and with full support

in [−1, 1], and that the distribution of biases is also symmetric around 0. As before,

we consider the communication game with mutual observability and an activity rule.

Proposition 3. Let (N,G) be a network such that i is linked to i+ 1 for all i. Then,

for generic (b1, . . . , bn), there is a function m(γ) with m(γ) −−→
γ→0

such that, for γ0 low

enough and δ close enough to 1, the game has an equilibrium such that:

(i) Restricted to all θ except for a set of measure up to m(γ0), the equilibrium is

segmented and natural. For such θ, if θ < 0, i becomes informed iff she is in

min(S)’s segment or higher. If θ > 0, i becomes informed iff she is in max(S)’s

segment or lower.

(ii) There is ε > 0 such that, for θ ∈ (−ε, ε), everyone becomes informed.

The intuition behind this equilibrium structure is as follows. First, as in Propo-

sition 1, the players’ posteriors under ignorance reinforce their biases, so that θ(1) <

. . . < θ(n). When θ > θ(n), players always want to inform lower-bias neighbors,

and only higher-bias neighbors who are close enough; this leads to the same general

results as in Proposition 2 when θ = 1. The outcome when θ < θ(1) is analogous.

However, values of θ lying in [θ(1), θ(n)] create a different set of incentives. Suppose

θ(i) < θ < θ(i + 1) for some i. Then both i and i + 1 want to inform everyone, as
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the actions of higher-bias players will be lowered after learning θ, while the actions of

lower-bias players will be increased. Consider now i−1, who wants to inform everyone

except for i; and i + 2, who wants to inform everyone except for i + 1. Since i and

i+ 1 talk to each other, both i− 1 and i+ 2 have effectively only two options: inform

both i and i + 1 or neither. However, depending on whether sharing θ increases or

decreases the average of i and i + 1’s actions, it will always be optimal for at least

one of {i − 1, i + 2} to inform them. Hence, if any player in {i − 1, i, i + 1, i + 2} is

informed, everyone becomes informed.

This argument can be iterated: given an interval of players who inform everyone,

at least one of the adjacent players on either end will be willing to inform that set, and

thus everyone. The argument ends when we run out of players on one side, pinning

down b̂1(θ) or b̂kθ(θ). After that, the remaining players have monotonic incentives, so

their behavior is as in Proposition 2. However, for θ close to zero, the set of players

who inform everyone turns out to be the entire population. That is, just as in the

myopic setting, moderate states of the world are communicated to everyone.

Well-Connectedness in Random Graphs

The condition of well-connectedness is satisfied only by networks with a relatively

high number of links. However, it is not too restrictive, and is plausibly satisfied

by real social networks. To illustrate, take an Erdõs-Rényi random graph G(n, p),11

with n equal to 320 million. Assume γ0 is small, biases are uniformly distributed

and bn − b1 = 4 (so that, per part (ii) of Proposition 2, there are 4 segments in

equilibrium). Then, if we assume an average degree of np = 404, at least 99% of the

resulting networks are well-connected (see Proposition 6 in Appendix B). This bound

is not tight, so in fact even a somewhat lower average degree would be sufficient.

That aside, an average degree of 404 is approximately in line with online social

networks: for example, the average Facebook user in the U.S. has 338 friends (Smith,

2014). In addition, well-connectedness can be satisfied for much lower average de-

grees if the network displays homophily. Indeed, a high global average degree is not

required for well-connectedness—rather, it suffices for the average degree, restricted

to ideologically similar players, to be relatively high. To illustrate, in our example, a

person whose bias is in the 50th percentile must have an expected 101 friends with

11That is, a graph with n nodes in which any two nodes are linked with probability p.
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biases between the 38th and 62nd percentiles.

Equilibrium Analysis for Trees

All of our previous results rely on the network having a relatively high number of

links. The other extreme—a network that is sparse enough—is also tractable but

yields very different results. Namely, in the case of a tree with a single source of

information, the problem of learning cascades can be solved recursively, starting with

the peripheral players who are upstream of only one other player. We will not assume

mutual observability or an activity rule, as they make no difference here.

Proposition 4. Assume that the state of the world is binary (P (θ = −1) = P (θ =

1) = 0.5), (N,G) is a tree, and γ(S) > 0 only for singleton S. Then, for δ is close

enough to 1 and γ0 low enough, there is generically a unique sequential equilibrium,

characterized as follows.

If S = {i0}, we say j is downstream of i if the shortest path connecting i0 to j

passes through i. Let l(i) be i’s path distance from i0. Let l = maxi l(i).

(i) Players at distance l only have one neighbor. If informed, they cannot inform

anyone else.

(ii) For k = 1, . . . , l, In the kth round, consider all players at distance l − k. Each

such player i can only be informed by her unique neighbor at distance l− k− 1.

For each of her other neighbors j, if θ = 1, i informs j at the first opportunity

if

bA < bi +
1

2
,

where A is the set of players downstream of j, including j, who are informed

in equilibrium if j is informed, and bA is the average bias of players in this set.

Else, if bA > bi + 1
2
, i never informs j.

Analogously, if θ = −1, i informs j iff bA′ > bi − 1
2
, where A′ is the set of

downstream players informed in equilibrium.

An example is given in Figure 8. Assume that (b1, . . . , b6) = (0.95, 1, 1.4, 1.6, 1.8, 2.2),

θ = 1, and 2 is informed by Nature. She chooses to inform 4 but not 3. These de-

cisions are influenced by their downstream consquences: 4 will inform 1 but not 6,
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Figure 8: Communication on a tree
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while 3 would inform 5. If, for instance, b6 was lowered to 2.05, 4 would now inform

6, and 2 would no longer inform 4.

We finish with two observations. First, the assumption of a single source is cru-

cial: if two players are initially informed, multiple equilibria can arise (see Appendix

A). Second, even though well-connected networks and trees both admit tractable

equilibria, they result in different patterns of information transmission. Whereas on

a well-connected network the players break up into segments based on their biases,

on a tree, communication is influenced by the network structure as much as by the

distribution of biases. This can lead to either more or less communication, and to

outcomes that are more sensitive to the parameters.

We illustrate this in two ways. First, consider a tree of the following form: i0 is

linked to n; i is linked to i + 1 for all i ∈ {1, . . . , i0 − 2} ∪ {i0 + 1, . . . , n − 1}; and

i0 − 1 is linked to i0 + 1. Suppose i0 is the only player informed by Nature. How

far does information spread when θ = 1? Clearly, if n is informed, everyone is; else

no one (besides i0) is informed. Moreover, there is a threshold b such that, holding

everything but bi0 constant, if bi0 > b, then everyone is informed, while if bi0 < b,

then no one is. Thus, the outcome can depend dramatically on fine details about the

agents’ preferences.

Second, imagine that a planner could design the network, with the goal of having

a certain set of players become informed when θ = 1. If i0 is the only player informed

by Nature, then the planner can guarantee that any set A ⊆ N − {i0} of players

becomes informed, subject to the condition that i0 prefers all of A to be informed

rather than no one, i.e., bA < bi + 1
2
. Moreover, the planner can always achieve

this with a forest: she can connect the players in A in a descending line, with i0

connected to the highest-bias member of A, and leave all other players isolated. On

the other hand, any set A that violates the condition could not be the set of informed

agents resulting from any network, as i0 would rather message no one than allow this
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outcome on the equilibrium path.

5 Discussion

Welfare Implications

Ex post (conditional on θ), agents often want others to remain uninformed. For

example, when θ is high, agent 1 may want agent n to remain uninformed, so that n

chooses a lower action. However, this does not imply that low levels of information

transmission are optimal. Indeed, ignorance can only lead n to choose lower actions

if n is also sometimes uninformed when θ is low, and in those cases n’s action under

ignorance would be too high. Thus, ex ante, n being less informed cannot push her

average action closer to 1’s preferences, and only results in a worse fit between her

actions and the state. This logic implies that equilibria leading to more information

transmission are preferred ex ante by every agent.12 Formally:

Remark 4. Consider two message strategy profiles m, m̃. Let p(θ, j, t), p̃(θ, j, t) denote

j’s probability of being informed at time t when the state is θ, under each respective

message strategy. Suppose that p(θ, j, t) ≥ p̃(θ, j, t) for all θ, j, t. Denote i’s ex ante

payoffs generated in each case by Ui, Ũi, if actions are optimal given messages. Then

Ui ≥ Ũi for all i.

The model thus matches the conventional wisdom that assigns a negative conno-

tation to breakdowns in communication. An immediate implication of Remark 4 is

that an equilibrium with full diffusion, if it exists, is ex ante optimal for all agents (if

they are patient). Therefore, all agents would be better off if they could collectively

commit to playing the game myopically (compare Proposition 2 to Corollary 1).

Ex post, equilibria with partial diffusion lead to distributions of actions that may

be more or less dispersed than those obtained under full information. For instance,

under the conditions of Proposition 2, it is straightforward to show that an agent’s

long-run mean posterior under ignorance increases in her bias: −1 < θ(1) ≤ . . . ≤
θ(n) < 1. This means that, when Nature informs no one (S = ∅), actions in the long

run are more dispersed than under full information. When a strict subset Y ⊂ N of

players eventually becomes informed, the actions of players in N − Y are still more

dispersed with respect to one another, but may be closer to the actions of players in

12A similar result is shown in Corollary 2 of Galeotti et al. (2013).
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Y : for instance, if θ = 1 and Y = {1, . . . , i}, the actions of agents above i will be

lower than they would be under full information, while the actions of agents below i

will fully take into account that θ = 1.

Alternative Models

Several possible changes to the model deserve discussion. One alternative concerns

the communication protocol: in many settings players cannot personalize their mes-

sages (e.g., on Twitter). Embedding this assumption in the model may lead to more

communication if the network displays homophily and agents are myopic, as they

would then be willing to share information with their mostly-similar neighbors, with-

out being able to hide it from the more biased ones. But it may also lead to less

communication if agents are forward-looking, as they would be fearful of informa-

tion spilling into the wrong hands, and would potentially have to censor all their

communication to prevent this.

Another alternative involves changing the payoff structure: in some settings, each

player i may care about the average of the others’ actions, rather than everyone’s

individual actions. (For example, i may care about the vote share in an election

rather than individual votes.) The distinction is subtle but important: a focus on

average actions tends to lead to coarser segments. For instance, if θ = 1, players

in the bottom half of the bias distribution (who perceive the average action as too

high) may hide the state not just from players above them, but from all players.

Conversely, players in the top half (who perceive the average action as too low) may

want to inform everyone. Note, however, that an objective function like the one in the

paper is recovered if players care about average actions, but also penalize variance in

the distribution of actions. (For instance, more dispersed votes may lead to gridlock

or uncertain political outcomes.)

Another potential extension concerns endogenous network formation and infor-

mation acquisition. In the model, biased players are more likely to see information

contradicting, rather than reinforcing, their biases; beliefs reinforce biases in the ab-

sence of information, a form of “negative echo chambers”. While puzzling, this result

is a natural consequence of our assumption that the players are active as senders but

passive as receivers (i.e., they cannot choose which of their neighbors to listen to, nor

change their probability of being informed by Nature). Giving players more control
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over information sources may lead to “positive echo chambers”, but not necessarily

more learning; instead, if players care about influencing others, they may choose to

spend most of their time listening to like-minded agents, who are more likely to share

useful ammunition for arguing with other groups.

Finally, this paper focuses on the case where information is all-or-nothing, that is,

an informative message fully reveals the state. In reality, multiple partially informa-

tive signals may be available. If anything, a model with this feature would tend to

generate less communication: if players are exposed to many signals, so that each one

has a small impact on beliefs, there would never be a motive to share a high signal

with a high-bias player in order to correct a large mistake in her beliefs.

26



References

Acemoglu, Daron, Munther A. Dahleh, Ilan Lobel, and Asuman Ozdaglar,

“Bayesian Learning in Social Networks,” The Review of Economic Studies, 2011,

78 (4), 1201–1236.

, Victor Chernozhukov, and Muhamet Yildiz, “Fragility of Asymptotic

Agreement under Bayesian Learning,” Theoretical Economics, 2016, 11 (1), 187–

225.

Banerjee, Abhijit V, “A Simple Model of Herd Behavior,” The Quarterly Journal

of Economics, 1992, 107 (3), 797–817.

Bloch, Francis, Gabrielle Demange, and Rachel Kranton, “Rumors and Social

Networks,” International Economic Review, 2018, 59 (2), 421–448.
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A Other Equilibria with Forward-Looking Players

In networks that are not well-connected, and without the assumptions of mutual

observability and an activity rule, concerns about learning cascades can support a

variety of complex or pathological equilibria. We illustrate the possibilities in several

examples. In all of these, we assume that γ0 > 0 is small and that θ = 1 is realized.

Figure 9: Multiple Pareto-ordered equilibria
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First, Figures 9a and 9b show games with multiple equilibria that are Pareto-

ordered, in the sense that the informed agents agree on the best equilibrium but

cannot necessarily coordinate on it. In Figure 9a, take (b1, b2, b3, b4, b5) = (0, 1, 1, b, b+

ε), with 3
2
< b < 2; γ({2, 3}) small and γ(S) = 0 otherwise; and ε > 0 small. Then 4

and 5 talk to 1 if they are informed, while 1 talks to no one. Both 2 and 3 want to

inform 1, but not 4 or 5. However, it is worth using one and only one of them as an

intermediary. Hence, there is an equilibrium in which 2 talks to 4 while 3 does not

talk to 5, and another in which the opposite happens. Although both 2 and 3 would

rather inform 4, if the “wrong” equilibrium is being played, there is no way for 2 to

inform 4 and tell 3 that informing 5 is no longer necessary.

In Figure 9b, (b1, b2, b3, b4, b5) = (1, 1, b, b, b + 0.4), where 1 < b < 3
2
; γ({2, 3}) is

small, and γ(S) = 0 otherwise. (This example requires a directed network, where 5

can receive but not share information, but more complex examples can deliver similar

results in an undirected network.) Here 3 and 4 will talk to 5 if informed. 1 and 2

are willing to inform 3 and 4, but this comes at the cost of informing 5. It is then

optimal to either inform no one or everyone; and one of these options (depending

on the value of b) is preferred by both 1 and 2. However, for a range of values of b,

both are equilibrium outcomes. Indeed, if no one is informed in equilibrium, then a

deviation by 1 can inform {3, 5}, but not 4: a one-player deviation does not capture

the full value of switching to the informative equilibrium. Conversely, if everyone is
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informed in equilibrium, then a deviation by 1 leaves 3 uninformed while having no

effect on 4 or 5, which is never profitable.

Figure 10: Multiple unordered equilibria
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Figure 10 shows that there may be multiple equilibria that are not Pareto-ordered

for the informed players. Suppose that γ({2, 4}) is small, and γ(S) = 0 otherwise.

As in Figure 9a, 2 and 4 want to use either 8 or 9 as an intermediary to share

information with 1. Hence, for appropriate bias vectors b, there are two pure-strategy

equilibria. However, the choice of intermediary now results in other players learning,

such as {3, 7} or {5, 6}; since 2 and 4 in general differ in their preferences over which

group to inform, examples can be constructed where 2 would rather use 9 as an

intermediary, and 4 would rather use 8, or vice versa. Note that, if 2 and 4 could

observe each other’s actions, the first case would become a game of preemption (each

player races to be the first to communicate) while the second would become a war of

attrition (each player waits for the other to use her intermediary).

Figure 11: History-dependent strategies
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Figure 11 presents an example in which the equilibrium must condition on the

players’ histories in an important way. Assume that (b1, b2, b3, b4, b5) = (0, 1, 1.6, 3, 3),
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and γ({4}) = γ({5}) = 0.1 and γ(S) = 0 otherwise. Clearly 1 never talks, and 2

never talks to 4 or 5. 3 and 4 always inform 1 if they are informed, and 4 and 5

always inform 2. 3 would talk to 2 but never can (since 2 is 3’s only potential source)

and 3 talks to 1. The question then is: should 2 inform 3? The answer depends on

how 2 became informed. If 2 was informed by 5, he should inform 3, but not if he

was informed by 4.

The reason is that 2 wants to inform 1, but not 3. If 5 is the informed player,

informing 3 amounts to also informing 1: 3 is used as an intermediary. However, if 4

is informed, then 1 would become informed no matter what 2 does.

This example can be altered to produce another in which players want to manip-

ulate each other. Suppose that γ({4}) = 0.001, γ({5}) = 0.1, γ({4, 5}) = 0.009 and

γ(S) = 0 otherwise. Then the analysis proceeds as before, with one caveat: now 4

should not talk to 2. Indeed, 4 would rather risk a 10% chance that 2 will go unin-

formed (if 5 is uninformed) to ensure that, with a 90% chance, 2 will be informed by

5 and hence, thinking that 4 is likely uninformed, she will inform 3.

Figure 12: Non-existence of pure-strategy equilibrium
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Finally, 12 shows that a pure-strategy equilibrium may not exist. Suppose that

(b1, b2, b3, b4, b5) = (0, 0.45, 0.9, 2, 2.6); γ({1, 4}) is small and γ(S) = 0 otherwise.

(This example also assumes a directed network in which 3 is only a receiver.) Then 2

and 5 always inform 3. 1 wants to inform 2 but not 3, and would rather tell neither

than both; 4 wants to inform 3 but not 5, and would rather tell both than neither.

Then, if neither player is talking, 4 would deviate and inform 5. If 4 is talking and

1 is not, 1 would deviate and inform 2 (since 3 is already informed). If both 1 and 4

are talking, 4 would deviate and stop talking (since 3 is already informed). And if 1

is talking but not 4, 1 would deviate and stop talking.
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Robustness of Natural Equilibrium

We finish with a survey of alternative sets of conditions which guarantee the existence

of a natural equilibrium, without requiring the addition of mutual observability and

an activity rule to the game. However, these conditions do not guarantee uniqueness,

so they do not rule out the existence of other equilibria like the ones we have just

described.

Proposition 5. If (N,G) is well-connected, then generically, for γ0 low enough and

δ = 1,13 there is a natural equilibrium of the game without mutual observability or an

activity rule, with the same segments M1, . . . , Mk+1 and M1, . . . , Mk+1 found in

Proposition 2.

In other words, a natural equilibrium always exists when δ = 1 (but so do many

other equilibria, as with δ = 1 players are indifferent over any deviations that do

not change the information distribution in the long run). Moreover, it has a simple

structure: when θ = 1, a player in M l always informs players in segments M l and

higher, and never informs players in lower segments. (The case θ = −1 is analogous.)

13This means that the players’ ex ante payoffs are Ui = limt→∞E0(uit), where uit is i’s flow payoff
at time t. This is well-defined since p(θ, i, t) converges for all θ, i, so uit converges.
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B Proofs

Proof of Remark 1. Suppose (N,G) is well-connected but an interval (a, b) with b−
a > 1−γ0

2−γ0 is not connected. Let i0 be the lowest member of N(a,b). Then, for some

i ∈ N(a,b), there is no path between i0 and i. Let i1 be the lowest member of N(a,b)

disconnected from i0. Then there is a path between i0 and i1−1. Consider the interval

NI for I = (bi1−1−ε, bi1−1−ε+ 1−γ0
2−γ0 ) for small ε > 0. If i1 is in this interval for any ε ∈

(0, 1−γ0
2−γ0 ), then, by well-connectedness, there is a path from i1−1 to i1, a contradiction.

If not, then the interval
(
bi1−1, bi1−1 + 1−γ0

2−γ0

)
is empty, a contradiction. Finally, taking

(a, b) large enough so that N(a,b) = N , we conclude that N is connected.

Proof of Remark 2. Each player i chooses ait to maximize Eit(−(ait− θ− bi)2). Since

this is a concave function of ait, the unique optimum is given by the FOC: ait =

Eit(θ) + bi, where Eit(θ) = θ if i is informed and Eit(θ) = θ(i, t) if not, by definition.

Proof of Proposition 1. The first part follows from the fact that i’s marginal payoff

from informing j at time t is

P
[
−(bj − bi)2 + (bj + θ(j, t)− bi − θ)2

]
= P (θ − θ(j, t))

[
(θ − θ(j, t))− 2(bj − bi)

]
,

where P > 0 is the probability that j will be uninformed by the end of time t if i

does not inform j.

The existence and uniqueness of equilibrium can be proven by solving the game

forward. Indeed, suppose the result is true up to time t. Let x(i) be a candidate

value for agent i’s mean posterior under ignorance at the end of period t + 1. The

communication strategies at time t+ 1 are then uniquely determined by the first part

of this Proposition. For x ∈ [−1, 1], define T (x) as

T (x) =

∫ 1

−1 θ(1− p̃(θ, i, t+ 1, x))f(θ)dθ∫ 1

−1(1− p̃(θ, i, t+ 1))f(θ)dθ
, where (1)

1− p̃(θ, i, t+ 1, x) = (1− p(θ, i, t))

(
1−

∑
j∈Ni

αp(θ, j, t)

n|Nj|
1(θ−x)(θ−x−2(bi−bj))>0

)
. (2)

Here p̃(θ, i, t+1, x) is i’s probability of being informed at the end of t+1, as a result of

message strategies that depend on x. αp(θ,j,t)
n|Nj | is the probability that j is chosen as the
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sender, i is chosen as the receiver, and j is informed. 1(θ−x)(θ−x−2(bi−bj))>0 equals 1 iff

j wants to inform i. Intuitively, T (x) is i’s equilibrium mean posterior if i’s neighbors

communicate as if her mean posterior is x. x(i) is compatible with equilibrium iff

T (x(i)) = x(i). To finish the proof, we will show that, for α > 0 small enough, T

is a contraction. This will imply that the mean posteriors θ(i, t + 1) are uniquely

determined, and hence that the equilibrium is uniquely determined up to time t+ 1.

Take two values x > x′. Equation 2 implies that, for any y,

1− p(θ, i, t) ≥ 1− p̃(θ, i, t+ 1, y) ≥
(

1− n− 1

n
α

)
(1− p(θ, i, t)).

The upper bound obtains if no neighbors of i ever inform her; the lower bound obtains

if every j 6= i is connected to i and only to i, always informed, and wants to inform i.

In particular, then, |1− p̃(θ, i, t+ 1, x)− 1 + p̃(θ, i, t+ 1, x′)| < α. In addition, clearly

1 ≥ 1− p̃(θ, i, t+ 1, y) ≥ 1− γ0 for all y.

In fact, p̃(θ, i, t+ 1, x) and p̃(θ, i, t+ 1, x′) can only differ if, depending on whether

x(i) = x or x′, at least one neighbor of i would change her strategy towards i in this

period. In other words, for some j ∈ Ni, the expressions (θ − x) (θ − x− 2(bi − bj))
and (θ− x′) (θ − x′ − 2(bi − bj)) must have opposite signs. In particular, either θ− x
and θ− x′, or θ− x− 2(bi− bj) and θ− x′− 2(bi− bj), must have opposite signs (but

not both). Equivalently θ ∈ [x′, x]4[x′+ 2(bi− bj), x+ 2(bi− bj)], a set of measure at

most 2(x− x′). Thus p̃(θ, i, t+ 1, x) and p̃(θ, i, t+ 1, x′) only differ on a set of values

of θ of measure at most 2(n− 1)(x− x′).
Let

∫ 1

−1 θ(1 − p̃(θ, i, t + 1, x))f(θ)dθ = A,
∫ 1

−1 θ(1 − p̃(θ, i, t + 1, x′))f(θ)dθ = A′,∫ 1

−1(1− p̃(θ, i, t+1, x))f(θ)dθ = B,
∫ 1

−1(1− p̃(θ, i, t+1, x′))f(θ)dθ = B′. Our previous

arguments imply that |B|, |B′| ≥ 1− γ0 and |A|, |B| ≤ 1. Let f = maxθ f(θ). Then

|T (x)− T (x′)| =
∣∣∣∣AB − A′

B′

∣∣∣∣ =
|AB′ − A′B|
|BB′|

=
|(A− A′)B − A(B −B′)|

|BB′|
≤

≤ |A− A
′||B|+ |A||B −B′|
|B||B′|

≤

≤ |A− A
′|+ |B −B′|

(1− γ0)2
≤ 2× α× 2(n− 1)(x− x′)f

(1− γ0)2
.

For any α small enough that 4fα(n−1)
(1−γ0)2 < 1, T is a contraction, which completes the
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proof.14

Proof of Corollary 1. (a) Consider the subgraph (N,G′) given by deleting any links

in (N,G) between players whose biases differ by 1−γ0
2−γ0 or more. Clearly (N,G′) is still

well-connected. By Remark 1, (N,G′) is connected. Note that θ(i, t) ∈ [− γ0
2−γ0 ,

γ0
2−γ0 ]

for all i, t. (The upper bound is attained when p(1, i, t) = 0, p(−1, i, t) = γ0, and the

lower bound when p(1, i, t) = γ0, p(−1, i, t) = 0.) Then, by Proposition 1, if θ = 1 and

i is informed, i will want to inform j whenever bj < bi + 1−γ0
2−γ0 . In particular, any two

players at distance less than 1−γ0
2−γ0 will inform each other, so information flows freely

on all links in G′. Then, if any player is informed, everyone is informed eventually.

Hence p(θ, i) = γ0 for all θ, i.

(b) We begin by noting that, if i has a meeting with j and i > j, i informs j iff

θ > θ(j, t) (Proposition 1). Next, we argue that θ(n, t) is increasing in t. Suppose for

the sake of contradiction that θ(n, t + 1) ≤ θ(n, t). Then, in equilibrium, informed

players i < n who meet n at time t+1 will inform n iff θ ≤ θ(n, t+1) ≤ θ(n, t). Hence

1−p(θ, n, t+ 1) is strictly smaller15 than 1−p(θ, n, t) for θ ≤ θ(n, t+ 1) ≤ θ(n, t) and

equal for θ > θ(n, t + 1), whence θ(n, t + 1) > θ(n, t), a contradiction. By the same

argument, θ(1, t) is decreasing in t. In particular, this implies that θ(1, t) < θ(n, t)

for all t and hence θ(1) < θ(n).

Next, we prove that there is full diffusion for states θ ∈
(
θ(1), θ(n)

)
. Take such a

state, and let t0 be such that θ ∈
(
θ(1, t), θ(n, t)

)
for all t ≥ t0. Then, at any time

t ≥ t0, all players other than 1 want to share θ with 1 (to increase her action), and

all players other than n want to share θ with n (to decrease hers). Hence p(θ, 1) =

p(θ, n) = γ0. But then, for any player 1 < i < n, either 1 or n will share θ with i,

depending on whether θ > θ(i, t) or vice versa. Hence p(θ, t) = γ0 for all t. On the

other hand, if θ < − γ0
2−γ0 , then θ is only ever shared from lower types to higher types

(as it is lower than anyone’s posterior under ignorance), yielding the result. The case

θ > γ0
2−γ0 is analogous. The assumption that i is linked to i + 1 for all i guarantees

that if i is informed, every k > i becomes informed as well.

Proof of Corollary 2. As γ0 → 0, p(θ, i) ≤ γ0 → 0 for all θ and i. Then θ(i, t)→ E(θ),

which equals 0 by assumption.

14When F does not admit a density, T may have discontinuities. But it can be shown that T is

increasing, and moreover T
(
− −γ02−γ0

)
> − −γ02−γ0 , T

(
−γ0
2−γ0

)
< −γ0

2−γ0 , so existence is guaranteed.
15Here we use that n meets some informed player with positive probability, as n is connected to

everyone.
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Next consider the case γ0 → 1. Assume first that 1 and n are not always in the

set of players informed by Nature (even conditional on these sets being nonempty).

Note that, if θ(1) → −1 and θ(n) → 1 as γ0 → 1, we are done (by the proof of

Corollary 1.(b)). For the sake of contradiction, then, suppose WLOG that θ(1) does

not converge to −1, so there is a sequence γk0 → 1 such that θ(1)k → θ0 > −1. Then,

as k → ∞, the probability that 1 does not learn the state converges to 0 for θ > θ0

but is bounded below by 1 −
∑

1∈S γ(S) > 0 for θ < − γ0
2−γ0 . But then θ(1)k must

converge to some value in the interval (−1, θ0), a contradiction.

If 1 and/or n are always informed by Nature conditional on S being nonempty,

the result goes through for a different reason. If they are both always informed, one

of them will always be willing to inform each other player i, depending on whether

θ > θ(i, t) or θ < θ(i, t). If only one of them is always informed—say, 1—then our

previous argument still implies θ(n)→ 1 as γ0 → 1. On the other hand, θ(1, t) ≡ 0 =

θ(i). For any player 1 < i < n, p(θ, i) = γ0 for θ < θ(i) (as 1 would always inform i

for these values of θ), while p(θ, i) ≤ γ0 for θ ≥ θ(i). This implies θ(i) ≥ 0. Then 1

always informs i if θ < θ(i), while n informs i if θ ∈ (θ(i), θ(n)) ⊆ (θ(1), θ(n)), where

θ(n)→ 1. Hence p(θ, i)→|| ||1 1 as γ0 → 1 for all i.

Proof of Remark 3. For γ0 = 0, if θ = 1, i’s marginal payoff from a set of agents A

being informed versus not is

1

1− δ
∑
j∈A

[
−(bj − bi)2 + (bj − b1 − 1)2

]
=

1

1− δ
∑
j∈A

(2bi − 2bj + 1).

The result follows for γ0 = 0. By a continuity argument, the outcome of the algorithm

is the same for all γ0 > 0 low enough, as long as none of the comparisons that must

be checked yield equalities.

Proof of Proposition 2. We will proceed as follows. First, we will prove that, for

generic (bi)i, for all γ0 low enough, the game has a unique equilibrium which is in

pure strategies, and Markovian in a sense we will make precise. Second, we will show

that, for generic (bi)i, for γ0 low enough and δ close enough to 1, any pure strategy

Markovian equilibrium must be natural. Finally we will prove part (ii).

The equilibrium is unique, pure and Markovian.

Preliminaries. Assume for now that γ0 = 0. Denote the state of the game at a
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history h by s(h) = (θ, T, (kij)i∈T,j∈N−T ), where θ is the state of the world, T is the

set of informed agents, and kij is the number of times i has declined to inform j since

the last time anyone was informed (or K, whichever is lower), at the end of period t.

Note that the game has a finite number of possible states.

Given a Markov strategy profile σ, for each state s, let Vi(s, σ) be i’s value function

at time t if the state is s at the end of period t. Then, if i0 is informed and is given an

opportunity to send a message to an uninformed player j0, her marginal payoff from

doing so is

∆Vi(s, j, σ) = Vi(θ, T ∪ {j},0, σ)− V (θ, T, (k̃ij), σ),

where k̃i0j0 = min(ki0j0 +1, K) and k̃ij = kij for all other ij. Say s′ 6= s follows from s

if, the current state being s, the game could transition to s′ in one period (i.e., s′ has

one more informed player and (kij) = 0, or s′ has the same set of informed players

and (kij) higher by 1 in one coordinate).

Equilibrium construction. We construct a candidate equilibrium by backward

induction. Begin at terminal states (i.e., states with kij = K for all i, j, or T = N).

Call these 0-states. In this case, the game is over. Next, consider states s such that all

states that follow from them are 0-states, and call these 1-states. At any such state s,

it is optimal for i to inform j, given the chance, if ∆Vi(s, j, σ
∗) ≥ 0, with indifference in

case of equality. (Here σ∗ represents the unique equilibrium continuation determined

in the previous step.) Whenever ∆Vi(s, j, σ
∗) 6= 0, i’s optimal action is unique, pure,

and Markovian (i.e., the optimum is the same at all histories h that correspond to state

s). In general, in the kth step, consider (k−1)-states, i.e., states s such that all states

following from them are (k− 2)-states or lower. Then, whenever ∆Vi(s, j, σ
∗) 6= 0, i’s

optimal action is unique, pure and Markovian.

Proceeding by induction on the set of states, if ∆Vi(s, j, σ
∗) 6= 0 for all i, j, s, then

the equilibrium is unique, pure and Markovian. This algorithm terminates in at most

n3(K + 1) steps, as the state cannot advance more than n3(K + 1) steps without

reaching a terminal state. (T cannot grow more than n− 1 times, and for each fixed

T , each of the less than n2 coordinates of (kij) cannot grow more than K + 1 times.)

Genericity. Next, we will argue that the property ∆Vi(s, j, σ) 6= 0 for all i, j, s, σ

holds for a generic set of bias vectors (b1, . . . , bn). (Rather than check whether

∆Vi(s, j, σ
∗) 6= 0 for all i, j, s and the equilibrium continuation σ∗, we check the

stronger condition that the optimal action be unique for all possible Markovian con-

tinuations.) The formula for ∆Vi(s, j, σ) depends not only on i, j and s, but also
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on the strategy profile σ followed in the continuation, whichever action i chooses.

However, there is a finite number of pure Markovian strategy profiles σ. Indeed,

such a profile is fully pinned down by specifying, for each state s (from a finite set),

which informed players i would be willing to inform which uninformed players j, if

given the opportunity. Hence, we need to check that a finite collection of expressions

(∆Vi(s, j, σ))i,j,s,σ are all nonzero for generic (bi)i.

Vi(s, σ) can be written as follows. For each j and each t ∈ N0, assuming WLOG

that θ(s) = 1, let p(θ, j, t, s, σ) be the probability that j will be informed by t periods

from the present, if the current state is s, under the strategy profile σ. Then

Vi(s, σ) =
n∑
j=1

[
−P (θ, j, s, σ)(bj − bi)2 −

(
1

1− δ
− P (θ, j, s, σ)

)
(bj − bi − 1)2

]

=
n∑
j=1

[
−(bj − bi)2

1− δ
+

(
1

1− δ
− P (θ, j, s, σ)

)
(2(bj − bi)− 1)

]
,

where P (θ, j, s, σ) =
∑

t δ
tp(θ, j, t, s, σ). Since the P (θ, j, s, σ) are constants, ignoring

the first term −(bj − bi)2 for each j, Vi(s, σ) is a linear function of the bias vector. In

addition, if j is uninformed in state s, then P (θ, j, s, σ) ≤ δ
1−δ . On the other hand,

if s′ is the state following from s in which i has informed j, P (θ, j, s′, σ) = 1. Thus

∆Vi(s, j, σ) is a linear function of the bias vector, in which bj has a nonzero coefficient.

Thus, for each i, j, s, σ, ∆Vi(s, j, σ) = 0 for an affine set of bias vectors of dimension

n− 1, hence measure zero.

The case γ0 > 0. Next, we show that, for a generic set of values of the bias vector,

the same equilibrium found above is the unique equilibrium for all γ0 > 0 low enough.

Given (b1, . . . , bn) for which ∆Vi(s, j, σ) 6= 0 for all i, j, s, σ, let M > 0 be a uniform

bound such that |∆Vi(s, j, σ)| ≥ M for all i, j, s, σ. Denote by Vi(s, σ, γ0, t) i’s value

function at time t when the state of the game is s and the Markovian profile σ is

being played in the continuation, for any γ0 > 0. (Calculating Vi(s, σ, γ0, t) explicitly

involves calculating the mean posteriors under ignorance θ(j, t), given σ and γ0. Vi is

generally a function of t in this case because θ(j, t) is a function of t.) Then

Vi(s, σ, γ0, t) =
n∑
j=1

∞∑
t=0

δt
[
−(bj − bi)2 − (1− p(θ, j, t, s, σ))(bj + θ(j, t)− bi − 1)2

]
=⇒|Vi(s, σ, γ0, t)− Vi(s, σ)| ≤ 1

1− δ
(2bn − 2b1 + 3)γ0
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for all t, owing to the fact that |θ(j, t)| ≤ γ0
2−γ0 ≤ γ0 < 1 and |bj − bi| ≤ bn − b1.

Then, for γ0 ∈
(

0, (1−δ)M
4bn−4b1+6

)
, ∆Vi(s, j, σ, γ0, t) has the same sign as ∆Vi(s, j, σ)

for all t. Then the same backward induction argument used before yields the result.

(Rather than consider (k − 1)-states in step k, consider all histories h corresponding

to (k − 1)-states in step k.)

The equilibrium is natural.

We will now show that, for generic (bi)i, for δ close enough to 1 and γ0 low enough,

any pure strategy Markovian equilibrium must be natural. Because the equilibrium

is constant in a neighborhood of γ0 = 0, it is enough to write the proof for γ0 = 0.

The proof relies on three key observations. First, if δ is close to 1, and the game

reaches a terminal state quickly—so that every player that ever becomes informed

does so quickly—then the players’ payoffs depend mainly on the set of players who

become informed in the long run, i.e., on the terminal state. Second, the activity rule

guarantees that a terminal state will be reached quickly in expectation. Third, in any

pure strategy Markovian profile, any terminal state reached with positive probability

is reached with probability uniformly bounded away from zero. Formally, we have

the following three lemmas.

Lemma 1. Let pt be the probability that an event A happens at time t, and qt =∑t
t′=0 pt′ the probability that it happens by time t. Then, if the expected time E(A)

until A happens is finite, that is,
∑∞

t=0 tpt = E < ∞, then, for any δ ∈ (0, 1),∑∞
t=0 δ

t(1− qt) ≤ E.

Proof. Note that, if E <∞, qt −−−→
t→∞

1. Then

∞∑
t=0

δt(1− qt) =
∞∑
t=0

δt
∞∑

t′=t+1

pt′ =
∞∑
t=0

pt

t−1∑
t′=0

δt
′ ≤

∞∑
t=0

tpt = E.

Lemma 2. Let A be the event that the game reaches a terminal state. Then E(A) ≤
n5(K+1)

α
<∞.

Proof. In each period before a terminal state, Nature selects an informed sender and

an uninformed receiver with probability at least α
n(n−1) . (This lower bound would
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obtain if only one player j is uninformed, and only one other player i is linked to j.)

Each time this happens, the state of the game s must advance to a state s′ 6= s that

follows from s, that is, either T grows or T stays constant and (kij) grows. Thus the

expected time until the state advances is at most n(n−1)
α

.

The state cannot advance more than n3(K + 1) times without the game reaching

a terminal state. Then E(A) ≤ n5(K+1)
α

<∞.

Lemma 3. There is a fixed P0 > 0 such that, if any terminal state s is reached with

positive probability under some pure Markovian strategy profile σ, then it is reached

with probability at least P0.

Proof. Suppose s can be reached under the strategy profile σ. Then, because σ is

pure, there is a (finite) sequence of Nature moves (z1, . . . , zt) that definitely leads

to s. In general, a Nature move takes the form zi ∈ N2 ∪ ∅, where (i, j) means

i is chosen as the sender and j as the receiver, and ∅ means no sender is chosen.

Moreover, because σ is Markovian, any sequence of Nature moves that contains the

same sequence of nonempty moves leads to s as well, as empty moves do not change

the state. (For example, ((1, 2), ∅, (1, 3)) leads to the same outcome as ((1, 2), (1, 3)).

In particular, if we remove all empty moves, we are left with a sequence of at most

n3(K + 1) moves that definitely leads to s. Any such sequence as probability at least

min
(
1− α, α

n2

)n3(K+1)
=: C of being realized.

Rest of the proof. Finally we prove that the equilibrium σ must be natural. The

proof is as follows. Denoting the set of segments for θ = 1 by Mk for k = 1, . . . , k+1,

we proceed by backward induction on k. At the k-th step, we show that, beginning

at any state in which someone in Mk is informed (but no one in a higher segment is),

in the terminal state, with probability 1, everyone in M1, . . . ,Mk is informed, and no

one else is.

For k = k+ 1, suppose that the claim is false, i.e., it is possible that not everyone

becomes informed, even if someone in the top segment, Mk+1, is informed. Take, then,

a set T ⊆ N which is extremal in the following way: T contains someone in Mk+1;

beginning in state (1, T,0), with positive probability, not everyone becomes informed;

but for every T ′ ⊃ T , beginning in state (1, T ′,0), everyone becomes informed with

probability 1. Let i0 = max(N − T ). Suppose i0 is linked to some j ∈ T such that

|bi0−bj| < 1
2
. This leads to a contradiction because j would want to inform i0. Indeed,

42



j’s marginal payoff from deviating and informing i0 at the first opportunity takes the

following form:

(1− δ)∆Vj(s, i0, σ) = P
∑

i∈N−T

[
−(bj − bi)2 + (bj − bi − 1)2

]
+O(1− δ),

where P ≥ P0 is the probability that T becomes the terminal state on the equilibrium

path,16 and the term O(1− δ) captures the residual payoffs generated on the path of

play before the terminal state is reached, with or without a deviation. (That these

payoffs are bounded by a fixed multiple of 1− δ follows from Lemmas 1 and 2.) Note

that the first term is positive since, by construction, bi < bj + 1
2

for all i ∈ N − T ,

whence bN−T < bj + 1
2
. And for δ close enough to 1, the first term dominates, so j

would deviate.

Hence no such j must be linked to i0. If bn − bi0 ≥ 1
2
, we obtain another con-

tradiction, as the interval
(
bi0 − ε, bi0 − ε+ 1

2

)
must be disconnected for ε > 0 small

enough. If bn − bi0 < 1
2
, then no agent in

(
bn − 1

2
, bn
]

may be informed, as otherwise,

by well-connectedness, there would be a path from an informed j in this interval to

i0, hence a direct link from some informed j′ to some uninformed i′ in this interval,

leading to the same contradiction. Then, let j0 = max(T ). (By assumption, j0 must

be in the top segment.) By well-connectedness,
(
bj0 − ε, bj0 − ε+ 1

2

)
⊆ [b1, bn] must

be connected for small ε > 0, hence j0 must be linked to some i1 > j0 who, by

construction, is uninformed. j0’s payoff from deviating and informing i1 takes the

following form:

(1− δ)∆Vj0(s, i1, σ) = P
∑

i>j0

[
−(bj − bi)2 + (bj − bi − 1)2

]
+

+P
∑

i∈N−T s.t. i<j0

[
−(bj − bi)2 + (bj − bi − 1)2

]
+O(1− δ),

where the first sum is positive by construction of the natural segments, the second

sum is positive term by term, and the third term vanishes.

For k ≤ k, the argument has two steps. First, we argue that, if everyone in the

segments M1, . . . ,Mk has become informed, then, with probability 1, no one else will

be informed in equilibrium. We prove this claim with an extremal argument, working

backwards from the states in which the activity rule binds. Suppose the claim is false,

16By construction, the informed set in the terminal state must be either T or N with probability
1.
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and let s = (1, T, kij) be a state in which T = ∪ki=1M i; with positive probability, more

players are informed in the continuation; and, for every state s′ =
(
1, T, k′ij

)
6= s with

k′ij ≥ kij, no one else is informed in the continuation with probability 1. (Such a state

s must exist because no one else is informed if the activity rule binds). Then, by

construction of s and by the inductive hypothesis, if an informed player i is picked as

a sender by Nature in state s and an uninformed j is the receiver, i’s marginal payoff

from informing j is

(1− δ)∆Vi(s, j, σ) =
∑
i∈M

[
−(bj − bi)2 + (bj − bi − 1)2

]
+O(1− δ),

where M = ∪k′i=k+1M i if j ∈ Mk′ . By construction of the natural segments, this

payoff is negative for δ close to 1, a contradiction.

Second, we argue that, if someone in Mk is informed, everyone in this and lower

segments will become informed, and no one in higher segments will. The proof is

similar to the case k = k+ 1. Briefly, suppose not, and take T ⊆M1∪ . . .∪Mk to be

extremal in the following way: beginning in state (1, T,0), with positive probability,

either some players in M1 ∪ . . . ∪Mk are never informed, or some players outside of

this set are informed (or both); but, for any T ′ such that T ⊂ T ′ ⊆ M1 ∪ . . . ∪Mk,

beginning in state (1, T ′,0), all players in M1∪ . . .∪Mk are informed in the terminal

state, and no one else is, w.p. 1. (Such a T must exist because, if the players in

M1 ∪ . . . ∪Mk and only them are informed, no more players are ever informed.)

By construction, starting from (1, T,0), the only sets of players that can be in-

formed in the long run with positive probability are T or M1 ∪ . . . ∪Mk′ for some

k′ ≥ k. (If a player in M1 ∪ . . . ∪ Mk − T is informed first, then the outcome is

M1 ∪ . . .∪Mk, by definition of T ; if a player in Mk′ (k′ > k) is informed first, by the

inductive step, the outcome is M1 ∪ . . . ∪Mk′ ; if no one is informed, the outcome is

T .)

By an analogous argument to the one given for k = k+1, when the set of informed

players is T , there must be an informed player i connected to a j ∈M1∪ . . .∪Mk−T ,

such that either i ∈ Mk or i > max(M1 ∪ . . . ∪Mk − T ). In either case, i strictly

prefers the outcome M1 ∪ . . . ∪Mk to all other possible outcomes. Hence, whenever

she can message j, she must do so. Since i will always get a chance to do this before

the activity rule binds, T cannot be the set of informed players in the terminal state

with positive probability.
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Now note that, for all i ∈M1 ∪ . . . ∪Mk, i’s utility if M1 ∪ . . . ∪Mk′ is informed

in the long run is strictly decreasing in k′ for k′ ≥ k. Thus, letting k∗ be the maximal

k′ for which M1 ∪ . . . ∪Mk′ is informed with positive probability, any player who is

to inform someone in Mk∗ on the equilibrium path would strictly prefer to deviate, a

contradiction.

The argument for θ = −1 is analogous.

Part (ii). The first half follows trivially from Remark 3.

For the second half, we will prove the following. Define a random variable X that

takes the values b1, . . . , bn each with probability 1
n
, and denote its c.d.f. by F . Then,

if there is ζ ≤ 1 such that for all b′ − b ≥ 1
2

we have

1

2ζ
(b′ − b) ≥ E(X − b|X ∈ [b′, b]) ≥ ζ

2
(b′ − b),

then the natural segment thresholds b1 < . . . < bk, b1 < . . . < bk satisfy

1

ζ
≥ bi+1 − bi ≥ ζ,

1

ζ
≥ bi+1 − bi ≥ ζ.

The argument goes as follows. Suppose θ = 1 is realized, j+1 is the lowest member

of segment [bi, bi+1), and j is the highest member of the segment immediately below.

It must be that j prefers not to inform the set of agents in [bi, bi+1) when γ0 is low

enough, in particular when γ0 = 0. If γ0 = 0, the net payoff from informing them is

0 ≥ ∆ = −
∫ bi+1

bj

(b′ − bj)dF (b′) +

∫ bi+1

bj

(b′ − bj − 1)dF (b′)

=

∫ bi+1

bj

[1− 2(b′ − bj)] dF (b′) =⇒ 1 ≥ 2E(X − bj|X ∈ (bj, bi+1])

=⇒ 1

ζ
≥ bi+1 − bj =⇒ 1

ζ
≥ bi+1 − bi.

Conversely, j + 1 must prefer to inform the set of members of [bi, bi+1] above him.
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When γ0 = 0, the net payoff from informing them is

0 ≤ ∆̃ = −
∫ bi+1

bj+1

(b′ − bj+1)dF (b′) +

∫ bi+1

bj+1

(b′ − bj+1 − 1)dF (b′)

=

∫ bi+1

bj+1

[1− 2(b′ − bj+1)] dF (b′) =⇒ 1 ≤ 2E(X − bj+1|X ∈ (bj+1, bi+1])

=⇒ bi+1 − bj+1 ≥ ζ =⇒ bi+1 − bi ≥ ζ.

The proof for the thresholds bi is analogous.

Proof of Proposition 3. To begin, construct a natural equilibrium when γ0 = 0. This

can be done in exactly the same fashion as in Proposition 2: since informed players

have common knowledge of θ, and the beliefs of uninformed players are independent

of the exact distribution of θ as long as E(θ) = 0, the continuations after Nature

picks each possible value of θ can be solved separately. Indeed, the case of any θ > 0

is equivalent to θ = 1 in the binary case if we multiply all the biases by 1
θ
, and an

analogous argument applies to θ < 0. Finally, for θ = 0, everyone is indifferent at all

times. Denote such a natural equilibrium for the case γ0 = 0 by σ0.
17

Next we move on to the case γ0 > 0. First we show that, for small γ0 > 0, we have

θ(1, γ0) < . . . < θ(n, γ0), where we are making the dependence on γ0 explicit. The

argument goes as follows. Calculate the long-run mean posteriors under ignorance

for 1, 2, . . ., n under the assumptions that γ0 = γ > 0 but σ0 is still played. Denote

these by θ
d
(1, γ), . . . , θ

d
(n, γ). It can be shown directly that θ

d
(1, γ) < . . . < θ

d
(n, γ)

for all γ ∈ (0, 1), and moreover that ∂θ
d
(1,γ)
∂γ
|γ=0 < . . . < ∂θ

d
(n,γ)
∂γ
|γ=0. (This follows

from the fact that σ0 is segmented for each θ.)

Next, it is straightforward to show that the equilibrium σ0 is strict for a generic

set of values of θ ∈ [−1, 1]. Indeed, σ0 restricted to a certain realization of θ > 0

is guaranteed to be strict if, for all i and all A ⊆ N , the expression −bA + bi + θ
2

is nonzero—a finite number of linear equations in θ, in all of which θ has nonzero

coefficient. Hence σ0 is strict when restricted to all but finitely many values of θ.

17Note that, for θ close enough to zero, the network will no longer be well-connected, even if i is
linked to i+ 1 for all i, since the differences bi+1−bi

θ will grow bigger than 1
2 . However, by arguments

analogous to the proof of Proposition 2, the equilibrium will still be natural; when the adjusted bias
gaps between consecutive agents grow bigger than 1

2 , this will simply lead to one-person segments.
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As a result, there is a function m(γ), with m(γ) −−→
γ→0

0, such that if we assume any

mean posterior belief paths under ignorance bounded by ± γ
2−γ , σ0 is still a strict

equilibrium for all values of θ except for a set of measure up to m(γ). Therefore,
∂θ
d
(i,γ)
∂γ
|γ=0 = ∂θ(i,γ)

∂γ
|γ=0. This implies that θ(1, γ0) < . . . < θ(n, γ0) for small γ0 > 0.

It also implies that, for all γ0 ∈ (0, γ), the equilibrium is unique and natural for a set

of values of θ of measure at least 2−m(γ). This proves (i).

For (ii), we will show that there is a strict equilibrium with full learning when θ =

0. By continuity of the utility functions in θ and the backward induction arguments

employed in Proposition 2, this will imply that there is full learning for all θ in a

neighborhood of 0, as we want.

Consider first a modified game in which the mean posterior belief paths under

ignorance are identically equal, by assumption, to their long-run values in the real

equilibrium. That is, assume that the players’ actions under ignorance are as if

θ(i, t) = θ(i) for all i, t. This game has an equilibrium which is generically unique,

pure and Markovian, by the same arguments from Proposition 2. Suppose that, in this

equilibrium, full learning fails to obtain with positive probability when θ = 0. Again,

by the same arguments from Proposition 2, this means that a terminal state with

partial learning is reached with probability bounded away from zero, P ≥ P0 > 0.

Now take T ⊂ N with the following property: beginning in state (0, T,0), full

learning fails to obtain with positive probability, but for any T ′ ⊃ T , full learning

obtains w.p. 1 beginning in state (0, T ′,0). By construction, the set of informed

players in the long run, beginning in state (0, T,0), must be either T or N with

probabilities adding up to 1, as anyone else being informed triggers full learning.

As in Proposition 2, we can reduce a player i’s incentives to inform one of her

neighbors j to the effect of such a message on the set of informed players in the

terminal state, plus second-order terms. Thus, if there is an informed player i ∈ T
that would strictly prefer all of N − T being informed vs. not, and who is linked to

an uninformed player j, i would always inform j at the first opportunity, leading to

full learning—a contradiction. Thus, no such i can exist.

Let i0 be the lowest informed player who is adjacent to an uninformed player (i.e.,

either i0− 1 or i0 + 1 is uninformed), and let i1 be the highest. Then it must be that

both prefer to leave all of N − T uninformed rather than inform them. Suppose that

bN−T ∈ [bi0 , bi1 ]. Informing the members of N − T has two effects: it may increase or

decrease the average action chosen by them, depending on whether
∑

j∈N−T
θ(j)
|N−T | is
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smaller or greater than 0, and it will decrease the variance of their actions—something

desired by both i0 and i1—since θ(j) is increasing in j. Then, if
∑

j∈N−T
θ(j)
|N−T | < 0, i1

would strictly prefer to inform the group, while in the opposite case i0 would strictly

prefer to inform, and in case of equality, they both would, a contradiction in any case.

Then we must have bi0 ≤ bi1 < bN−T or bN−T < bi0 ≤ bi1 . WLOG assume the

former. For i1 to prefer not to inform N − T , we must have
∑

j∈N−T
θ(j)
|N−T | < 0. This

implies that bi1 > bN , as otherwise all the players missing from N in N − T would be

players with below-average bias, hence with negative mean posterior under ignorance

(and note that the population average of the mean posteriors must be zero, by the

symmetry assumption).

Divide the set of players into five groups: D = {i1}; her opposite B = {n+1− i1}
(where, since bi1 > bN , we must have i1 > n + 1 − i1); E = {i1 + 1, . . . , n}; their

opposites A = {1, . . . , n−i1}; and the players in the middle, C = {n+2−i1, . . . , i1−1}.
i1 strictly prefers to inform each player j with bj < bN (since bj < bi1 , and bj < bN

implies θ(j) < 0), as well as each player j with bj > bi1 (since bj > bi1 > bN means

that θ(j) > 0). In particular, i1 strictly prefers to inform any players in A ∪ E that

are still uninformed.

As for players in B ∪ C, note the following. By construction E ⊆ N − T , while

in general only some subset of A is included in N − T . Hence, by the symmetry

assumption,
∑

j∈(A∪E)∩(N−T ) θ(j) ≥ 0, which implies
∑

j∈(B∪C)∩(N−T ) θ(j) < 0. Then

i1 also strictly prefers informing (B∪C)∩(N−T ) versus not, since informing them will

increase their average action (note bj < bi1 for all j ∈ B ∪C) and reduce the variance

of their actions. Thus i1 strictly prefers to inform a neighbor, thus guaranteeing full

learning, versus not, and full learning must obtain with probability 1.

Proof of Proposition 4. Assume WLOG that θ = 1. The proof is by induction on k.

For any player i with k = 1, if i is informed by her upstream neighbor, each of her

other (downstream) neighbors j has no one else to inform. If bj < bi + 1
2
, then, since

θ(j, t) ∈ [− γ0
2−γ0 ,

γ0
2−γ0 ], for γ0 > 0 low enough, i strictly prefers for j to be informed

at all times, so i informs j at the first opportunity. If bj > bi +
1
2
, i strictly prefers for

j to be uninformed forever, and never informs j. The case bj = bi + 1
2

is non-generic.

Now, suppose the result is true up to k − 1. Let i be a player at distance l − k
from i0, and let j be a downstream neighbor. By the inductive hypothesis, if j is

informed, then every member of A is informed, and no one else (downstream of j).
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Moreover, because all players who inform others do so at the first opportunity, and

the network is finite, the number of periods until any member of A is informed is

uniformly bounded in expectation. In addition, if i informs j at time t, the expected

delay (counting from t) until any other agent in A is informed is not a function of t

(again, because messages are sent at the first opportunity). Thus i’s marginal payoff

from informing j at time t, relative to doing so at time t+ 1, can be written as

∑
j′∈A

∞∑
s=0

δs(1− δ)
[
−(bj′ − bi)2 + (bj′ + θ(j′, t+ s)− bi − 1)2

]
Q(j′, s),

where Q(j′, s) is the probability that it would take s periods for j′ to be informed,

after i informs j. As δ → 1 and γ0 → 0, this can be written as

(1− δ)
∑
j′∈A

[1− 2(bj′ − bi) +O(1− δ) +O(γ0)] =

=(1− δ)|A| [1− 2(bA − bi)] +O(1− δ) +O(γ0).

This follows from the fact that θ(j′, t + s) ∈ [− γ0
2−γ0 ,

γ0
2−γ0 ] for all j′, s, and from the

fact that the expected delay until each j′ is informed is finite.

In the generic case where bA 6= bi+
1
2
, if bA < bi+

1
2
, then this expression is positive

for all δ close enough to 1 and γ0 low enough. Hence i prefers informing at t over

informing at t + 1 for all t. Therefore, i prefers informing immediately to waiting

until any future opportunity (or never informing). If bA > bi + 1
2
, then informing at t

is worse than informing at t+ 1 for all t, and by the same logic it is optimal to never

inform j.

Proof of Remark 4. We will show a stronger statement: that, for each i, j and t,

E ((ajt − θ − bi)2) ≤ E ((ãjt − θ − bi)2). (Here ajt, ãjt denotes j’s action at time t

under m and m̃, respectively, and E is an expectation given only the prior.)

Clearly this is true for i = j, as j can make better decisions with strictly more

information. In addition,

E
(
(ajt − θ − bi)2

)
− E

(
(ajt − θ − bj)2

)
= E (ajt − θ) 2(bj − bi) + b2i − b2j =

= 2bj(bj − bi) + b2i − b2j ,
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where the last equality follows from the fact that E(ajt) = E(θ) + bj for any infor-

mation structure, by Remark 2 and the law of iterated expectations. Because the

right-hand side is independent of the message strategy profile,

E
(
(ajt − θ − bi)2

)
−E

(
(ãjt − θ − bi)2

)
= E

(
(ajt − θ − bj)2

)
−E

(
(ãjt − θ − bj)2

)
≤ 0.

Proposition 6. Let G(n, p) be a large Erdõs-Rényi random graph, taking the popu-

lation N = {1, . . . , n} and the distribution of biases (b1, . . . , bn) as fixed. Let K =
2(bn−b1)(2−γ0)

1−γ0 and m = n
K

. Suppose that (b1, . . . , bn) are roughly uniformly distributed,

i.e., (1−ε) bj−bi
bn−b1 ≤

|{i,...,j}|
n
≤ (1+ε)

bj−bi
bn−b1 whenever bj−bi ≥ 1−γ0

2(2−γ0) . Let np = (lnm+c)K
1−ε .

Then (N,G) is well-connected with probability 1− 3(K − 1) e
−c

1−ε or greater for n large

enough.

Proof of Proposition 6. Partition the interval [b1, bn] into subintervals of size Z =
(1−γ0)
2(2−γ0) . In other words, write [b1, bn] = I1∪ . . .∪ Im, where Il = [b1 + (l−1)Z, b1 + lZ)

for l < m and Im = [b1 + (m− 1)Z, bn].

The proof is in two steps. First we argue that, to guarantee well-connectedness,

it is sufficient that, for each l s.t. 1 < l < m,

(i) each interval Il is connected;

(ii) each i ∈ Il−1 has a link to some agent in Il, and each i ∈ Il+1 has a link to some

agent in Il.

The proof is as follows. Let (a, b) ⊆ [b1, bn] be an interval such that b− a = 1−γ0
2−γ0 .

By construction, (a, b) contains at least one subinterval Il (for 1 < l < m). Let i

be an agent with bi ∈ (a, b). Then we must have i ∈ Il−1, Il or Il+1. If i ∈ Il, i is

connected to the rest of Il by (i). If i ∈ Il−1, she is connected to someone in Il by (ii).

Thus, all agents in (a, b) are connected through Il.

The second step is to calculate the probability P (n) that a random network on n

agents (satisfying the conditions imposed on the distribution of biases, as well as p)

satisfies the conditions (i) and (ii). We can provide a lower bound for P (n):

P (n) ≥
m−1∏
l=2

Pl(n)−
m−1∑
l=2

[
1−

(
1− (1− p)|Il|

)|Il−1|+|Il+1|
]
,
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where Pl(n) is the probability that Il is connected,
(
1− (1− p)|Il|

)|Il−1|+|Il+1| is the

probability that all members of Il−1 and Il+1 have a link to Il, and we are using the

fact that P (A ∩B1 ∩ . . . ∩Bk) ≥ P (A)−
∑k

i=1 P (Bi).

By our assumptions, |Il|
n
≥ (1−ε)Z

bn−b1 = 1−ε
K

, i.e., |Il| ≥ (1− ε)m =: m′. On the other

hand, p = lnm+c
(1−ε)m = lnm′+c+ln(1−ε)

m′
.

It is known that, in an Erdõs-Rényi random graph (a, q) with link probability

q = ln a+c
a

, the probability of the graph being connected converges to e−e
−c

as a→∞
(Erdos and Rényi, 1960). Therefore, for any sequence of n-random networks satisfying

the conditions on the bias vectors, lim infn→∞ Pl(n) ≥ e−e
−c−ln(1−ε)

.

In addition, (1 − p)a → e−ap as a → ∞ if ap converges to a constant. Hence

(1 − p)|Il| ≈ e−|Il|p, and
(
1− (1− p)|Il|

)|Il′ | ≈ e−e
−|Il|p|Il′ |. Since (1 − ε)m ≤ |Il| ≤

(1 + ε)m, we have

e−e
−|Il|p|Il′ | ≥ e−e

−(1−ε)m lnm+c
(1−ε)m (1+ε)m = e−e

−c(1+ε)

m−1∑
l=2

[
1−

(
1− (1− p)|Il|

)|Il−1|+|Il+1|
]
≈

m−1∑
l=2

[
1− e−e−|Il|p(|Il−1|+|Il+1)

]
≤

≤ (m− 2)
(

1− e−2e−c(1+ε)
)
≤ (m− 2)2e−c(1 + ε).

Thus

lim inf
n→∞

P (n) ≥e−e−c−ln(1−ε)(m−2) − (m− 2)2e−c(1 + ε) ≥

≥1− e−c−ln(1−ε)(m− 2)− (m− 2)2e−c(1 + ε) ≥ 1− 3(m− 2)
e−c

1− ε
.

Finally, by construction, m = dKe so m ≤ K + 1. Then

lim inf
n→∞

P (n) ≥ 1− 3(K − 1)
e−c

1− ε
.

If we take n = 320.000.000, γ0 close to zero, (b1, bn) = (−2, 2) and the distribution

of biases close to uniform (that is, ε close to zero), then K = 16, m = 20.000.000,

ln(m) ≈ 16.81, and lim inf P (n) ≥ 1 − 45e−c. Then, if we take c = 8.42, at least

99% of the resulting networks are well-connected. This choice of c implies an average

degree np = 404.
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If the network exhibits homophily, the condition that a player’s average global

degree be (lnm + c)K is no longer necessary. Consider, for instance, a model in

which a link between each pair of players i and j is formed with probability p1 if

|bj − bi| ≤ 1−γ0
2−γ0 , and with probability p2 otherwise. Such a model generates networks

with ideological homophily if p1 > p2.
18

Note that whether conditions (i) and (ii) are satisfied by a network depends ex-

clusively on links of the first type, as both conditions involve links within an interval

Il or between consecutive intervals, and each of these intervals has length 1−γ0
2(2−γ0) .

Then, reproducing the logic of Proposition 6, (N,G) is well-connected with probabil-

ity 1− 3(K − 1) e
−c

1−ε or greater for large n, if np1 = (lnm+c)K
1−ε . This implies an average

degree of at most 4+ε
K

(lnm+c)K
1−ε +

(
1− 4−ε

K

)
np2, since the fraction of players at distance

1−γ0
2−γ0 or less from a player i is at most approximately 4

K
(if i is not at an extreme of

the distribution). For instance, in our example, taking p1 = 1
n
(lnm+c)K

1−ε and p2 = 0,

we obtain networks with a probability of 99% or higher of being well-connected, but

average degree of at most 4
16

404 + 12
16

0 = 101.

Proof of Proposition 5. Given the natural segments, construct a strategy profile where,

when θ = 1, each i ∈ M l always messages every member of M l and lower segments,

but no one in higher segments; and analogously for θ = −1. By construction, this

strategy profile is natural. For it to not be an equilibrium, there would have to be

a strictly profitable deviation for some player. But the only deviations which change

the long-run payoffs are those that send messages to the wrong segments (e.g., when

θ = 1, i ∈M l would have to message someone in M l′ , with l′ > l), which are strictly

unprofitable by construction.

18This is a particular kind of Social Distance Attachment model (Boguná et al., 2004).
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