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Abstract

I study a dynamic model of electoral competition between candidates with

heterogeneous valence. When the candidates' and voters' policy preferences

di�er, the winner extracts rents, limited only by the voters' threat of electing

the weaker candidate. This threat becomes more costly to the voters when

the relevant time horizon is longer. Thus, term limits can increase the voters'

bargaining power and their welfare. Term limits are even more important for

curbing rent extraction if entry is strategic, as in that case strong incumbents

face weaker competition. The paper also compares the welfare properties of

seniority caps and stochastic term limits.

1 Introduction

The design of presidential term limits has garnered much debate. Most democracies

stipulate some form of term limits, restricting the number of times that a person can

be elected president. For example, in the United States, a politician can serve as

president for at most two four-year terms in total. This is a common system, but

many countries have a limit of one or three terms instead. Term limits may also apply

to other elected o�cials, such as governors or legislators. The tradition of term limits
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goes back to ancient Greece and the Roman Republic, where many public o�ces had

such constraints: for example, Roman consuls served for one year at a time and had

to wait several years to stand for election again.

Proponents of term limits argue that such constraints are a useful check on exec-

utive power. As the argument goes, frequent turnover of politicians is necessary to

maintain a healthy democracy; removing term limits would lead to a powerful presi-

dent becoming entrenched, with detrimental consequences. This fear is present even

in well-established republics where abuse of formal power or outright dictatorship are

unlikely outcomes. For example, prior to the Second World War, the United States

had an informal rule by which presidents did not seek to run for more than two terms.

Franklin D. Roosevelt broke this rule by successfully running four times, although he

died a year after being elected in 1944 for the fourth time. Seeing this as a threat to

democracy, Congress subsequently passed the Twenty-second Amendment, formaliz-

ing the two-term limit. In the words of 1944 Republican nominee Thomas Dewey,

who campaigned in favor of the reform, �Four terms, or sixteen years, is the most

dangerous threat to our freedom ever proposed� (Jordan, 2011).

However, the welfare impact of term limits in a standard model of electoral com-

petition is unclear. In a model where potential candidates and platforms are �xed (or

determined independently of term limits), the only e�ect of term limits is to restrict

the choice set faced by voters, leaving them worse o�. Introducing an ex post e�ort

decision may tilt the scales further against term limits, since the prospect of reelection

can incentivize e�ort.1

What are term limits good for, then? Are they necessary in strong democracies?

Or are they only justi�ed in weak democracies, where a shift to non-democracy or

institutional decay are real dangers?

To answer these questions, we study a dynamic model of elections with complete

information in which candidates compete by choosing policies but also di�er in their

ability, and challengers may strategically choose whether to contest an election. We

assume that, with some frequency, candidates are biased and seek to choose policies

not preferred by the voters�their ability to do so is curbed only by the threat of losing

to the opposition. However, there is no formal channel for an executive overreach or

1For instance, in Ferejohn (1986), politicians are homogeneous but choose an e�ort level while
in o�ce, and voters use a retrospective rule to reward e�ort. Reed (1994) extends the model to the
case where politicians have heterogeneous ability. In both cases, term limits would remove incentives
and make such rules less e�ective.
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democratic backsliding.

The paper makes two contributions. First, even in the absence of term limits,

the paper develops a novel framework for studying dynamic electoral competition.

Second, the paper identi�es the forces that make term limits bene�cial or detrimental

within this model.

We �rst consider a benchmark case in which challengers are non-strategic and

always enter when the opportunity presents itself. We show that, when politicians

are usually biased (i.e., their policy preferences di�er from the voters'), a one-term

limit is optimal, while when they are usually unbiased, having no term limits is

optimal. That term limits may be desirable even when entry is non-strategic (so

that there is no scope for entry deterrence) may be surprising. The logic behind

the result is that term limits do two things. First, they sometimes force voters to

ine�ciently discard good incumbents. Second, by limiting the maximum tenure of

any incumbent, term limits alleviate the dynamic concerns voters face when choosing

between candidates. Indeed, with a one-term limit, the continuation is independent

of who is elected today; without term limits, a bad incumbent can stay in the system

longer if elected, generating a bad continuation as well. Weak term limits thus lead

to bigger gaps between the attractiveness of good and bad candidates, and it is these

gaps that the winner of an election leverages to choose her preferred policies with

impunity when she is biased.

Optimal term limits must solve this trade-o� between optimal retention of talent

and limiting the bargaining power of strong candidates. Our �rst main result is that,

when politicians are often biased, the latter e�ect is strong enough to warrant term

limits.

The full model with strategic challenger entry introduces two additional concerns

to the analysis. On the one hand, as might be expected, challengers are less likely

to run against a strong incumbent; the danger that a good candidate will be able to

exploit the voters is thus more severe, and term limits more critical. On the other

hand, if entry is relatively costly, imposing term limits may lower the candidates'

expected gains from running for o�ce to the point that voters are not o�ered any

high-ability candidates at all.

Our approach to modeling term limits is �exible. In general, we allow for stochastic

term limits which allow an incumbent in their kth period to run for reelection with

probability pk. This nests conventional term limits (or as we will call them, classic
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term limits) as a special case. Many of our results concern stationary term limits,

which is to say limits in which pk is not a function of k. This class of term limits

turns out to be uniquely tractable and, in some cases, welfare-superior to classic term

limits. Although uncommon in practice, it does contain two important special cases:

pk ≡ 1 corresponds to no term limits, while pk ≡ 0 gives a one-term limit.

Our analysis also shows that non-stationary term limits (including, in particular,

classic term limits) create arti�cial incentives to sometimes elect the lower-ability can-

didate, due to di�erences in seniority or the expected future impact of a candidate on

competition. In particular, classic term limits can create an incumbency advantage,

incentivizing voters to reelect the incumbent over an equally quali�ed challenger.2

The logic is that open elections are desirable by virtue of generating more competi-

tion. Then, since classic term limits are more binding for senior politicians, voters

know that the fastest way to get a new open election is to reelect the incumbent until

her time runs out; electing a challenger would reset the clock.

Finally, in an extension we discuss �exible term limits, i.e., a setting in which

voters can choose on the �y to extend the incumbent's clock. This is an important

case since many attempts to change term limits are led by an incumbent, rather than

made ex ante by a social planner. Here voters discard bad incumbents and allow

good incumbents to run for reelection, but when the cost of entry is high (i.e., there

is a high potential for deterrence), they also deny very good incumbents, a form of

�fear of tyranny�.

Our paper ties into the theoretical literature on dynamic elections and term lim-

its. The way we model electoral competition is related to Ashworth and Bueno de

Mesquita (2008, 2009). The former presents a two-period model with strategic entry

but �xed platforms, while the latter studies a static model with strategic valence

investments and platform choice. Although both share ingredients with this paper,

it is the combination of all three elements�strategic entry and platform choice in a

fully dynamic setting�that underpins our results.

2This e�ect is di�erent from other mechanisms proposed in the literature, such as the elec-

toral selection e�ect (Ashworth and Bueno De Mesquita, 2008; Gowrisankaran, Mitchell and Moro,
2008; Zaller, 1998), whereby incumbents are better in expectation than the average candidate by
virtue of having won past elections; and the strategic challenger entry e�ect (Ashworth and Bueno
De Mesquita, 2008; Gordon, Huber and Landa, 2007b; Cox and Katz, 1996; Stone, Maisel and
Maestas, 2004), whereby challengers are deterred from running against good incumbents. These
e�ects�which are also encompassed by our model�would also lead to incumbents being reelected
with high probability, but not conditional on the challenger being of equal ability.
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There is a large literature on electoral signaling, i.e., models in which the incum-

bent's ability (Rogo� and Sibert, 1988; Rogo�, 1990) or preferences (Alesina and

Cukierman, 1990; Hess, 1991; Smart and Sturm, 2013) are private information, and

policies or economic performance serve as a signal. Aghion and Jackson (2014) stud-

ies a contracting problem in which a principal wants to incentivize an agent to take

a risky action that may reveal her type. In Harrington Jr (1993), the e�ectiveness of

di�erent policies is uncertain and electoral pressures may drive politicians to pander

to the voters' beliefs. The general point of these models is that reelection prospects

lead to signaling behavior, which may be good (e.g., when it induces e�ort) or bad

(e.g., when it induces budget cycles or inaction). Term limits tend to mute incentives

to signal.

Some papers in this literature deal speci�cally with term limits. In Bernhardt,

Dubey and Hughson (2004), the voters reelect the incumbent only if her policy is mod-

erate enough; with term limits, voters subject senior incumbents to more stringent

�ideological tests� to prevent an extreme type from reaching her last possible term,

in which she will be fully unconstrained. Banks and Sundaram (1998) and Duggan

(2017) study in�nite-horizon models in which agents can only be retained for two

periods (that is, a two-term limit is assumed), and there is moral hazard and adverse

selection. Electoral concerns can incentivize agents to exert more e�ort in their �rst

period, but not too much�otherwise voters would be too tempted to get a new chal-

lenger in every period and electoral incentives would vanish. Another strand of this

literature (Ashworth, 2005) uses the career concerns framework, in which symmetric

uncertainty about the politician's ability drives her to exert e�ort.

Our model departs from this literature by assuming that abilities are common

knowledge (hence no signaling), and that policy platforms are chosen before each

election, as in the Hotelling-Downs model. Another paper in the spirit of dynamic

Hotelling-Downs competition is Forand (2014): there, two parties compete by o�ering

policies in every period, except that the incumbent's position is �xed until she loses.

This is similar to how, in this paper, the incumbent's party does not draw new

challengers�hence cannot change its ability. In Forand (2014), policy choices are

tricky because politicians want to increase their policy payo�s but not choose policies

that can be easily attacked in the future. This concern does not arise in our model

because the sticky variable is ability, which is drawn randomly, not chosen.

There is also a sizable empirical literature on term limits, policy choice and the
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incumbency advantage, which is broadly in line with the mechanics and predictions

of this paper. For instance, Gowrisankaran et al. (2008) argue that incumbents with

long tenure in the U.S. Senate deter challenger entry, and term limits would increase

welfare by preventing this. Ban, Llaudet and Snyder (2016) estimate that 30% to

40% of the incumbency advantage in U.S. state legislatures is the result of deterring

experienced challengers, and Carey, Niemi and Powell (2000) and Lee (2008) provide

additional evidence of the incumbency advantage for U.S. Representatives and its

causes. These papers support our assumption of strategic challenger entry and its

logical consequence, entry deterrence. On the other hand, Gordon et al. (2007a)

show that judges facing electoral competition cater to voters by being harsher; and

Acemoglu, Reed and Robinson (2013) �nd that chiefs in Sierra Leone facing less

competition generate worse economic outcomes. This parallels our prediction that

politicians take advantage when unconstrained by challengers. Our model predicts

that (classic) term limits may strengthen the incumbency advantage. This prediction

is consistent with Querubín (2011), who �nds that the introduction of term limits to

the Philippines made incumbents safer prior to the end of their tenure.

The rest of the paper proceeds as follows. Section 2 presents the baseline model

with exogenous entry. Section 3 characterizes the equilibrium and its welfare prop-

erties. Section 4 adds strategic entry to the model. Section 5 considers the case of

�exible term limits. Section 6 concludes. All proofs are in Appendices A and B.

2 The Model

Time t = 0, 1, 2, . . . is discrete and in�nite. There are two types of players: a repre-

sentative voter with ideal policy x = 0,3 and a set of politicians who enter and leave

the model according to the rules of the electoral process.

In each period a politician is elected president. The voter cares both about the

incumbent's ability and her policy platform. The voter's utility function at time t is:

U t
v ((θs)s≥t, (xs)s≥t) =

∞∑
s=t

δs−tuv(θs, xs) =
∞∑
s=t

δs−t
(
θs − λx2

s

)
, (1)

where θs is the ability of the incumbent at time s; xs is the policy at time s; and

3The results extend to a setting with a continuum of voters, with the median voter taking the
role of the representative voter.
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λ > 0 is a parameter that re�ects the relative importance of valence vs. ideology.4

Politicians are chosen as follows. There are two parties, L and R. Every period, each

party presents a candidate to the election. If the incumbent can run for reelection, she

automatically becomes her party's candidate and there is a closed election. Otherwise

there is an open election.

Parties without eligible incumbents produce challengers. To simplify matters we

assume that politicians who have run in the past and lost, or become term-limited,

cannot return to politics, so challengers are always fresh draws from the pool. The

ability θ of a prospective challenger is drawn from a distribution F , given by a

bounded, continuous density f with support [0, 1]. A candidate's ability is perma-

nently �xed once drawn.

The utility of a politician i of party P at time t is given by

W t
i ((Is)s≥t, (xs)s≥t) =

∞∑
s=t

δs−t
[
b− γ(αis − xs)2

]
1is, (2)

where 1is equals 1 if i is in power at time s and 0 if not; b represents baseline rents

from o�ce; γ re�ects the relative importance of policy preferences vs. holding o�ce;

and αis is i's preferred policy, or bliss point, in period s. (Note that the politician is

assumed to only care about policy when he is in o�ce.)

We model politicians' bliss points as follows. In each period t, a politician has

probability µ of being ideologically biased relative to the voter, and probability 1−µ
of being unbiased. These are iid draws across periods and politicians. An unbiased

politician has bliss point 0 in that period; an biased politician of party R has bliss

point I > 0 in that period; and a biased politician of party L has bliss point −I < 0

in that period.

As a motivating story for this assumption, suppose each election is about a dif-

ferent �main issue� and platforms revolve around them; a generally biased politician

may be highly biased on some issues but not others. The constant µ parameterizes

the degree of con�ict of interest between voters and politicians.5

4Alternatively, xs ≥ 0 can represent rent-seeking or corrupt behavior by the politician. In this
case the politicians want as much corruption as possible. Most results below can be reformulated
accordingly.

5An apparently more straightforward assumption would be that politicians are always biased by
the same amount, but I may be large or small. Our approach is qualitatively similar but yields more
tractable results.
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We will make the following two parameter assumptions. First, I is large enough

that a biased politician's bliss point is never a viable platform: formally, I ≥
√

1
(1−δ)λ .

Second, b is high enough that a politician's �ow payo� while in o�ce is always positive:

b > γI2.

Electoral competition takes place as follows. Once each party has produced a can-

didate, their abilities and bias states for that period are publicly revealed; then each

candidate i simultaneously picks a policy platform xit ∈ R that will be implemented

if i wins. (This is a credible commitment, but no promises can be made about what

platforms will be o�ered in future elections.)6 Given these observed abilities and

platforms, the voter elects the politician o�ering her the highest expected utility.

2.1 Term Limits

In general we allow for stochastic and seniority-dependent term limits. Formally,

a term limit will be given by a sequence (pk)k≥1 of probabilities, where pk is the

probability that an incumbent in her k-th term is allowed to run again.7

We will de�ne three special classes of term limits. A term limit (pk)k≥1 has �nite

horizon if pm = 0 for some m. For m ∈ N, a classic m-term limit is given by pk = 1

for k < m and pm = 0. This is what is conventionally called an m-term limit. A

stationary p-term limit is one in which the incumbent is allowed to run again with

probability p in every history, i.e., pk = p for all k.

There are three reasons for studying general�in particular, stochastic�term lim-

its. First, stationary term limits, in particular, are very tractable, while illustrating

the same forces at work under classic term limits. Second stochastic term limits

can yield superior welfare outcomes; they are thus an institutional innovation worth

considering. Third, they can be seen as modeling the randomness of weakly institu-

tionalized democracies.8

6A concern regarding term limits is that term-limited incumbents may behave di�erently in o�ce
since they lack electoral incentives. As shown by the incomplete information literature, this may be
good or bad for voters. Since this is not the focus of our model, a reasonable choice is to set the
e�ect of this channel to zero; our assumption that politicians have the same ability to commit to
platforms regardless of seniority accomplishes this.

7Even more generally, we could consider mappings p : H −→ [0, 1] with the set of histories of
the game as the domain. The incumbent's probability of being able to run again could then depend
on her ability, the ability and tenure length of past incumbents, etc. In practice, however, ability is
hard to measure objectively and may hence be non-contractible. We do present an extension with
some of this �avor in Section 5.

8A stationary p-term limit can represent a society with no term limits in which the incumbent

8



2.2 Timing

The structure of the game is as follows. In each period t,

1. Nature decides (and reveals) if the incumbent elected at the end of period t− 1

can run again in period t.

2. Parties without an incumbent draw challengers from the pool; their abilities are

realized and publicly revealed.

3. The candidates' biases in period t are drawn and publicly revealed.

4. Candidates simultaneously make campaign promises for period t.

5. The voter chooses the winner and �ow payo�s are realized.

2.3 De�nition of Equilibrium

Our solution concept will be Markov Perfect Equilibrium (MPE). That is, actions

are assumed to depend only on the payo�-relevant components of the history: policy

choices depend only on the candidates' abilities and seniority, while votes depend

on abilities, seniority and platforms.910 In particular, the restriction to Markovian

equilibria rules out punishment strategies by the voter that could hypothetically force

politicians to o�er more centrist platforms.

We will further focus on symmetric MPE (SMPE). This means that strategies and

value functions will be equal for candidates of both parties. Finally, under stationary

term limits, we will restrict attention to stationary symmetric MPE (SSMPE), mean-

ing that strategies and value functions will also be independent of the incumbent's

seniority. In general we allow for mixed strategies; for simplicity, we will restrict our

notation to pure strategies when doing so entails no loss of generality.11

has a probability 1 − p of losing her chance to run due to a scandal, criminal charges, etc., or a
society with a one-term limit in which the rules can be �outed with probability p.

9While seniority does not a�ect current payo�s, it a�ects the incumbent's prospect of reelection,
so it is payo�-relevant.

10In particular, our de�nition of MPE does not allow for conditioning on calendar time. This
solution concept is sometimes called stationary MPE in the literature. We will instead reserve the
word stationary for when the MPE also does not condition on seniority.

11For example, we will simply talk of candidates choosing policies rather than probability distri-
butions over policies, since all policy choices in all equilibria turn out to be in pure strategies.
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2.4 Value Functions

We will use the following notation to denote the voter's equilibrium utility in di�erent

states. Holding �xed a Markov strategy pro�le, V is the voter's (expected) utility at

the beginning of the game. This is also the voter's continuation utility from an open

election.12

Vk(θ) (k ≥ 1) is the voter's utility from a closed election, with an incumbent of

ability θ and seniority k. That is, Vk(θ) is the voter's continuation utility at any

history h in which Nature has just revealed that the incumbent (of ability θ, who

has been elected k times) will be allowed to run for her (k + 1)-th term, and the

challenger's ability has not yet been realized.

Uk(θ) (k ≥ 0) is the voter's utility from electing a candidate of ability θ and

seniority k if that candidate makes her best o�er, xt = 0, in the current election.

More generally, if a politician (θ, k) o�ers platform x, the expected utility she o�ers

to the voter is Uk(θ)−λx2. We will refer to Uk(θ) as the politician's electoral strength.

Note that, by de�nition, for all k ≥ 0

Uk(θ) = θ + δpk+1Vk+1(θ) + δ(1− pk+1)V. (3)

This simpli�es under particular schemes. For example, under stationary limits this

becomes U(θ) = θ + δpV (θ) + δ(1 − p)V . Under an m-term classic limit, Uk(θ) =

θ + δVk+1(θ) for k = 0, . . . ,m− 2 and Um−1(θ) = θ + δV .

Some of our results will concern the welfare e�ects of term limits. Our main

measure of welfare will be the voter's expected utility, V .

3 Analysis

In this section we characterize the equilibria of the game. We �rst analyze the equi-

librium policy choices by the candidates, and the voter's decisions, taking the value

functions Uk(θ), Vk(θ) as given. We then characterize the value functions as pre-

cisely as possible; an explicit solution is given for stationary term limits. Finally, we

characterize the optimal term limits as a function of the parameters of the model.

Let us begin with a couple of observations. In each election, the voter must choose

12More precisely, V is the voter's continuation utility at any history h where Nature has just
revealed that the incumbent will not be allowed to run again.
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the candidate o�ering her the highest expected utility. By de�nition, this would be

the candidate with higher electoral strength, if both candidates were making their

best o�ers (xit = xjt = 0). Our �rst result is that this is indeed the candidate who

wins in equilibrium; but, if she is biased, she will only make the weakest o�er needed

to beat the losing candidate.

Proposition 1. In any MPE, in any election at time t between two candidates i, j

with respective seniorities ki, kj and abilities θi, θj, suppose that Uki(θi) > Ukj(θj).

Then i wins the election. If i is biased at time t, i o�ers |xit| =
√

Uki (θi)−Ukj (θj)

λ
, with

xit positive if i belongs to R and vice versa, and j o�ers xjt = 0 or an equivalent

mixed strategy.13 The voter, though indi�erent, chooses i; her continuation utility is

Ukj(θj). If i is unbiased at time t, i o�ers xit = 0, j's policy choice is indeterminate,

and the voter's payo� is Uki(θi).

The intuition behind this result is as follows. If the stronger candidate, i is

unbiased, her interests align with the voter's, so she o�ers xit = 0 and the voter

is strictly better o� electing her; there is nothing j can do. If i is biased, on the

other hand, and j is o�ering xjt = 0, then i maximizes her payo� by leaving the voter

indi�erent. Naturally, if j o�ered any other policy, i would best-respond with a policy

even further from 0, but then j could deviate back to 0 to win the election.

The situation when the winner is biased is akin to a bargaining game between the

stronger candidate and the voter, in which the candidate makes a take-it-or-leave-

it o�er�hence has all the bargaining power�and the voter's threat point, her only

leverage, is to elect the weaker candidate instead. In this situation, the greater the gap

in electoral strengths between the two candidates, the better the winner's bargaining

position. This insight underpins the main results of the paper.

We will now characterize the value functions. Because the winner of each election

is biased with probability µ, it follows from Proposition 1 that, for all k ≥ 1,

Vk(θ) = µE [min(Uk(θ), U0(θ′))|θ′ ∼ F ] + (1− µ)E [max(Uk(θ), U0(θ′))|θ′ ∼ F ] . (4)

Analogously, the voter's expected utility from an open election is

V = µE [min(U0(θ), U0(θ′))|θ, θ′ ∼ F ] + (1− µ)E [max(U0(θ), U0(θ′))|θ, θ′ ∼ F ] . (5)

13There are mixed-strategy equilibria in which j mixes with high enough weight near 0 that i's
best response is unchanged; they are payo�-equivalent to the equilibrium shown.
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Equations 3 and 4 for all k, together with Equation 5, allow us to reduce the problem of

�nding the functions Uk(θ), Vk(θ) to a �xed point problem. For instance, suppose that

pm = 0 for some m, and conjecture that the function U0(θ) equals some candidate

function Û0(θ). Under this conjecture, we can calculate a conjectured value of V

from Equation 5; Um−1 from Equation 3; Vm−1 from Equation 4; Um−2 from Equation

3; Vm−2 from Equation 4; and so on until we obtain a new conjecture for U0. This

collection of calculated value functions is supported by an equilibrium strategy pro�le

i� the new conjecture of U0 matches the original conjecture.

Proposition 2 derives some concrete implications of this argument.

1
0

1

θ

U(θ)

V (θ)
V

(a) Equilibrium under stationary limits

1
0

1

θ∗

θ

U0(θ)

U1(θ)

U2(θ)

V1(θ)

V2(θ)
V

(b) Equilibrium under a 3-term limit

Figure 1: Value functions

Proposition 2. Assume either stationary or �nite horizon term limits. Then:

(i) There is a unique SMPE.

(ii) If the term limits have �nite horizon, for each k, Uk(θ) and Vk(θ) are continuous

and strictly increasing in θ.

(iii) If the term limits are p-stationary, U ′(θ) ≡ 1
1−δp[µ+(1−2µ)F (θ)]

and V ′(θ) ≡
µ+(1−2µ)F (θ)

1−δp[µ+(1−2µ)F (θ)]
. U(0), V (0) and V can also be calculated explicitly.

(iv) Under m-classic limits, there is θ∗ ∈ (0, 1) such that Uk(θ
∗) is constant in k

and Vk(θ
∗) = V for all k. Uk(θ) and Vk(θ) are increasing in k for θ < θ∗ and

decreasing in k for θ > θ∗.
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It is worth highlighting several implications of Proposition 2. In an open election,

the higher-valence candidate always wins, as U0(θ) is increasing in θ. Under stationary

term limits�which make seniority irrelevant�the higher-valence candidate also wins

even in closed elections, so the system incentivizes the voter to retain talent e�ciently,

up to the constraint imposed by the term limits. However, under classic (or, more

generally, non-stationary) term limits, the lower-valence candidate may win in a closed

election. As illustrated in Figure 1b, when both candidates are weak (θ < θ∗),

the voter favors the incumbent because she has a shorter maximum tenure, so she

can do less harm. When both candidates are strong (θ > θ∗), the voter favors

the challenger, who can be retained longer. This can be interpreted as a form of

endogenous incumbency advantage (or disadvantage) created by term limits.

We turn now to an analysis of optimal term limits. To build intuition, consider

Equations 4 and 5 in the two extreme cases µ = 0 and µ = 1. If µ = 0 (politicians

are always unbiased), in each election, the voter gets to choose the higher of the two

candidates' electoral strengths. As a result, the voter's continuation utility increases

over time, as she is able to �nd and retain better politicians over time who enter and

compete. In this case term limits only serve to discard highly-selected incumbents

and so are detrimental to welfare.

On the contrary, if µ = 1 (politicians are always biased), in each election, the

voter's utility is the lower of the two candidates' electoral strengths, since the winner

fully extracts the di�erence between electoral strengths as policy rents. Term limits

then become bene�cial, because by limiting the candidates' maximum time in power,

they reduce the implicit time horizon that the candidate and the voter are bargaining

over in each election, and hence the leverage that the winner holds over the voter.

To see this, consider, for example, a voter choosing between two candidates of ability

θ1 > θ2 in a world of no term limits vs. a one-term limit. With a one-term limit, the

cost of choosing the weaker candidate is at most θ1− θ2. With no term limits, it may

be as high as θ1−θ2
1−δ . In the case of p-stationary term limits, we can show directly that

di�erences in electoral strengths are ampli�ed as term limits are weakened (by part

(iii) of Proposition 2, U ′(θ) is increasing in p).

An alternative way of thinking about this case is that the voter's utility is as

if politicians always o�ered xit = 0, but the voter was forced to pick the weaker

candidate every time. In such a world, the ability of the incumbent would decline

over time until term limits are triggered; restarting the process as often as possible
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would then bene�t the voter.

To summarize, optimal term limits solve a trade-o� between optimal retention and

curbing the bargaining power of strong candidates. The next Proposition provides a

characterization of optimal term limits following from this intuition. We consider a

term limit optimal if it maximizes the voter's ex ante utility V .

Proposition 3.

(i) If µ > 1
2
, a one-term limit (p1 = 0) is optimal among all stationary term limits.

(ii) If µ < 1
2
, no term limits (pk ≡ 1) is optimal among all stationary term limits.

(iii) If µ = 1
2
, all term limits (pk)k∈N that are either stationary or �nite horizon are

welfare-equivalent.

Parts (i) and (ii) show that our intuition leads to a knife-edge result: when politi-

cians are more often biased than not, even by a little, a one-term limit is optimal;

conversely, when they are more often unbiased than not, having no term limits is

optimal; when they are biased exactly half the time, all term limits are equally good.

Finally, note that while parts (i) and (ii) are proven only for stationary limits, part

(iii) also applies to all term limits with �nite horizon.

4 Strategic Challenger Entry

In this section, we extend the baseline model to allow for strategic challenger entry.

Speci�cally, we will replace the exogenous generation of challengers (part 2 of the

stage game as described in Subsection 2.2) with the following assumption. Each

party needing a challenger in a period t now generates a potential challenger who

can choose to run or not.14 Her ability is drawn from the distribution F but initially

unknown, to herself and others. If she runs, she becomes her party's nominee, and

her ability is publicly revealed. She pays a cost c > 0 of running and her payo�s

net of this cost are given by Equation 2. If she does not run, her payo� is zero and

her party runs a �ll-in candidate with ability equal to zero. After the challengers

and their abilities have been revealed, the stage game continues with part 3 as in

Subsection 2.2. For convenience we will assume that if a potential challenger does

14In an open election, both potential challengers make their entry decisions simultaneously.
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not enter, she misses her chance and another potential challenger will take her place

the next time her party needs a challenger.15

The inclusion of strategic entry in the model adds two considerations to the search

for optimal term limits which interact with the intuition set out in Section 3. On

the one hand, strong incumbents discourage challenger entry. Their ability to extract

rents is thus exacerbated: not only can stronger incumbents extract more rents against

a challenger of �xed ability, but they also face worse challengers. Term limits that

can remove such incumbents, then, become more desirable.16 On the other hand,

term limits themselves also discourage entry by limiting the candidates' maximum

potential rents from running.

We will need to introduce some notation at this point. qk(θ) will be a (potential)

challenger's probability of running in a closed election against an incumbent of ability

θ and seniority k. q0 will be a (potential) challenger's probability of running in an

open election. rk(θ, θ
′) will be the probability that a challenger of ability θ′ wins

against an incumbent of ability θ and seniority k.17

We will begin with the observation that more attractive incumbents face less

competition. Formally, take a symmetric Markov strategy pro�le as given. Suppose

there is an incumbent with ability θ and seniority k. If a challenger i runs with

probability q, her payo� is qTk(θ) − cq, where Tk(θ) is i's expected rents and policy

payo�s from running. Clearly i chooses qk(θ) = 1 if Tk(θ) > c and qk(θ) = 0 if

Tk(θ) < c; she is indi�erent if Tk(θ) = c. We can show the following:

Lemma 1. If Uk(θ) < Uk̃(θ̃), then either Tk(θ) > Tk̃(θ̃) or Tk(θ) = Tk̃(θ̃) = 0.

The incumbent's strength has two e�ects on the challenger: it makes the challenger

less likely to win her �rst race, and conditional on the challenger being strong enough

to win, it constrains what policies she can o�er in her �rst term. Both e�ects reduce

the expected gains from running.

15If we instead assume that the same agent will be the potential challenger the next time one
is needed (until she eventually runs), challengers will be less willing to run if they expect a more
favorable electoral landscape in the future. The intuition is otherwise unchanged.

16That removing a strong incumbent may bene�t voters by encouraging entry is reminiscent of
Baye, Kovenock and De Vries (1993), where a politician can extract higher bids from lobbyists by
excluding those known to have the highest willingness to pay.

17These de�nitions are needed because the equilibria in this case may involve mixed strategies.
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4.1 Equilibrium Characterization for Stationary Term Limits

We will now move towards an equilibrium characterization of the game with strategic

entry. We begin by focusing on the special case of p-stationary term limits, for which

we can fully characterize the set of SSMPE, i.e., the set of SMPE with Uk, Vk, qk, rk
independent of k.

First we settle a basic question: is electoral strength U(θ) increasing in θ, as

in Section 3? The answer is not obvious because, while higher-θ candidates directly

produce higher voter utility, they can also extract more rents�especially if they drive

out competition. In principle, if the entry deterrence e�ect is strong enough, it could

make high-θ candidates less attractive ex ante, i.e., it could make U(θ) nonmonotonic.

It turns out that this reversal is impossible under stationary term limits:

Proposition 4. In any SSMPE with p-stationary term limits, U(θ) is weakly increas-

ing.

The logic of this result is simple. If we had U(θ) < U(θ′) for some θ > θ′, the

candidate with ability θ would be easier to beat in subsequent elections, which would

lead to more competition against her, not less; this, in turn, would make her more

desirable. Thus, high θ cannot drive out so much competition that it becomes an

electoral liability.18

However, note that U does not have to be strictly increasing�in fact, in equilib-

rium, U will typically be �at over some interval. As a result it will be important to

assume something about how voters break ties if both candidates are equally attrac-

tive. We will assume that, in this case, voters �ip a coin, i.e., r(θ, θ′) = 1
2
, with one

exception:19 if one of the candidates is a �ll-in challenger, the voter breaks ties in

favor of the other candidate, i.e., r(0, θ) = 1 and r(θ, 0) = 0 even if U(0) = U(θ).20

The next Proposition provides a full characterization of the SSMPE.

Proposition 5. Any SSMPE of the game with strategic entry and p-stationary term

limits is given by thresholds 0 ≤ θ0 ≤ θ1 ≤ 1 such that challengers enter against

18We will see that this result does not carry through with non-stationary limits.
19This would be the uniquely selected outcome if a small, random symmetric payo� shock dif-

ferentiating the two candidates was realized before the election but after platforms were chosen.
Without assuming such a perturbation, other tie-breaking rules are possible and may induce more
or less entry deterrence.

20This tie-breaking rule prevents the equilibrium from changing discontinuously when U becomes
�at near zero (in the language of Proposition 5, when we switch between type 2 and type 3 equilibria).
It would be uniquely selected if �ll-in challengers' abilities were in fact slightly below zero.
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Figure 2: Equilibrium under stationary term limits

incumbents of ability θ < θ0, are indi�erent against θ ∈ (θ0, θ1), and do not enter

against θ > θ0.

An SSMPE can be of type 1, 2, 3 or 4.

(i) In a type 1 equilibrium, 0 < θ0 < θ1 = 1.

(ii) In a type 2 equilibrium, 0 < θ0 < θ1 < 1.

(iii)In a type 3 equilibrium, 0 = θ0 < θ1 < 1.

(iv) In a type 4 equilibrium, 0 = θ0 = θ1.

In any SSMPE of any type:

(i) Within [0, θ0), U(θ) and V (θ) are strictly increasing and q(θ) = 1.

(ii) Within (θ0, θ1), U(θ) is constant, and V (θ) and q are linearly decreasing.

(iii)Within (θ1, 1], q(θ) = 0, and U(θ) and V (θ) are linearly increasing.21

Given values of all the parameters except c, we say a strategy pro�le is a candidate

equilibrium if it is an SSMPE for some value of c. Then, for each θ ∈ (0, 1), there is

a unique candidate equilibrium with θ0 = θ, and a unique candidate equilibrium with

θ1 = θ. In all cases U(θ), V (θ), V and q(θ) can be explicitly calculated.

Moreover, given values of δ, p, µ, I, b, c and λ, there is φ > 1 such that, if f(θ)
1−F (θ)

≤
φ

1−θ∀θ, then there is γ0 > 0 such that for all γ < γ0, then the SSMPE of the game

with these parameters is unique.

The intuition is as follows. When the incumbent is weak (θ < θ0), she always

faces competition. Hence, U(θ) and V (θ) are increasing in θ in this region, as a

21Unless µ = 1, in which case V (θ) is constant.
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stronger incumbent is unambiguously better for the voter. (In fact, the expressions

for U ′(θ) and V ′(θ) in this region are the same as in Proposition 2.) However, when

the incumbent's ability crosses above θ0, challengers are su�ciently deterred that

they are indi�erent about running, as the potential rents from winning are harder

to attain. If an incumbent of ability θ is not challenged, V (θ) is correspondingly

lower, and hence so is U(θ). In equilibrium, the challenger's probability of running,

q(θ), declines exactly at the rate needed to make U(θ) constant in this region, and

challengers are indi�erent about competing against any θ ∈ [θ0, θ1], which enables

mixing. Since U(θ) = θ + δpV (θ) + δ(1 − p)V is constant, it follows that q(θ) must

also be decreasing exactly at the rate needed to make V (θ) decrease at a rate −1
δp
.

(Having U(θ) be constant over an interval is necessary: if q(θ) declined any faster,

U(θ) would be decreasing, contradicting Proposition 4; or, if q(θ) declined more slowly,

U(θ) would be increasing and hence T (θ) would cross over c at a single point, so that

q should jump discontinuously from 1 to 0 at θ0, a contradiction.)

Figures 2a and 2b illustrate equilibria of types 1 and 2 respectively. The equi-

librium is type 1 if entry is cheap enough that even the strongest incumbents are

challenged with positive probability. It is type 2 if the cost of entry is intermediate,

so weak incumbents are always challenged, while strong ones are never challenged�

they can only be removed by term limits. The equilibrium is type 3 if entry is so

costly that even the weakest incumbents are not always challenged.

That U(θ) is constant, but V (θ) decreasing, for θ ∈ (θ0, θ1) re�ects the intertem-

poral di�erences between payo�s o�ered by candidates of di�erent abilities. In this

region, higher-θ candidates o�er higher �ow payo�s today, which exactly o�set their

higher likelihood of exploiting voters in the future. In other words, they o�er more

front-loaded payo� paths.22

4.2 Equilibrium Characterization for General Term Limits

As in the baseline model, once we move away from stationary term limits, electoral

strength depends on both seniority and ability. Thus, there may be incumbency

advantage (or disadvantage) in the sense that when two candidates with the same θ

compete, the incumbent may be preferred simply by virtue of being the incumbent or

22This is reminiscent of entrenched presidents in weak democracies: strong incumbents perform
well at �rst, but over time become more corrupt. This pattern appears in the model despite the
incumbent having no power to manipulate institutions.
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vice versa.23 When entry is strategic, a second form of non-monotonicity arises: U0(θ)

may be non-monotonic, i.e., even between two challengers, the voter may purposefully

choose the one with lower ability due to fears that the stronger one will exploit her

in the future.

The next Proposition gives a partial equilibrium characterization in this setting.

1θ0

0

1

θ

(a) Two-term limit

1θ10 θ11 = θ20

0

1

θ

U0(θ)
U1(θ)
U2(θ)
U∗

V

(b) Three-term limit

Figure 3: Equilibrium under classic term limits

Proposition 6. In the game with strategic entry, assume pm = 0 for some m, pm′ > 0

for all m′ < m. Then all SMPEs are as follows. There is a utility threshold U∗ such

that qk(θ) = 1 if Uk(θ) < U∗ and qk(θ) = 0 if Uk(θ) > U∗.

For each k = 0, . . . ,m − 2 there is a set of cuto�s Ak = {θ1k, . . . , θlkk} such that

Ak−1 ⊇ Ak ∀k, and lk ≤ 2m−k−1 − 1 for k ≤ m− 2. Cuto�s θ ∈ Ak are given by the

condition Uk′(θ) = U∗ for some k′ > k. Electoral strength Uk(θ) has discrete jumps

(up or down) at the cuto�s θik ∈ Ak and is smoothly increasing in between.

By way of an illustration, we show in more detail the special case of a classic

two-term limit:

Corollary 1. Consider the game with strategic entry and a 2-term limit. Then all

SMPEs are as follows. There is a utility threshold U∗ such that q1(θ) = 1 if U∗ >

23Our model contains two other features that might also be construed as incumbency advantage.
First, incumbents are a selected group of politicians who have won at least one election, so they tend
to have higher ability. Second, with strategic entry, strong incumbents tend to face weak challengers.
Both forces increase the odds of reelection. But they do not give an advantage, conditional on facing
a challenger of equal ability. What we call incumbency advantage gives incumbents an edge against
a challenger of equal ability, and is a unique consequence of non-stationary term limits.
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U1(θ) and q1(θ) = 0 if U∗ < U1(θ). In the nondegenerate case where U1(0) < U∗ <

U1(1), the SMPE is described by a cuto� θ0 ∈ (0, 1) and a probability q0 of entering

open elections, such that:

(i) U∗ = U1(θ0), so q1(θ) = 1 for θ < θ0 and q1(θ) = 0 for θ > θ0.

(ii) U1(θ) = θ + δV is linearly increasing. U0(θ) is smoothly increasing everywhere

except at θ0, where it has a discrete drop.

(iii) U ′1(θ) < U ′0(θ) for θ < θ0 and U ′1(θ) ≤ U ′0(θ) for θ > θ0 (with equality only if

µ = 1).

(iv) If µ is close enough to 1, then U1(θ) ≥ U0(θ) for θ > θ0, and U1(0) ≥ U0(0), i.e.,

there is incumbency advantage for high ability as well as for very low ability can-

didates. There may be incumbency advantage or disadvantage at intermediate

ability.

Two degenerate cases are possible. For c low enough, U∗ > U1(1) and challengers

always enter. For c high enough, U∗ < U1(0) and challengers never enter an open

election.

Figures 3a and 3b show SMPEs in examples with a two-term limit and a three-

term limit, respectively. The logic behind the non-monotonicity of Uk(θ) is most

easily explained in the special case of a two-term limit. Just as in the stationary case,

incentives to run against an incumbent (θ, k) are a decreasing function of Uk(θ), so

there is a threshold U∗ such that challengers run against incumbents with U < U∗

and not against ones with U > U∗. However, now U1(θ) cannot be constant over

an interval, since the continuation utility from electing a term-limited incumbent is

�xed: U1(θ) ≡ θ + δV . In particular, U1(θ) must cross U∗ at a single point. Then

incumbents with θ < θ0 are always challenged while those with θ > θ0 never are.

This results in U0(θ) having a discontinuous drop at θ0: challengers with θ just above

θ0 are expected to suppress so much competition in their second term that they are

ex ante less desirable than an alternative with θ just below θ0. For higher m, the

equilibrium becomes more complicated as utilities �cycle� around U∗, by the same

logic: if Uk(θ) > U∗, then qk(θ) = 0 which often implies Uk−1(θ) < U∗, qk−1(θ) = 1

which in turn often implies Uk−2(θ) > U∗ and so on.

Another consequence of this analysis is that, with strategic entry, incumbency

advantage may be non-monotonic. In particular, under a two-term limit, seniority
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is favored when both candidates are strong (θ, θ′ > θ0) or when they are very weak

(θ, θ′ near zero), though not necessarily in the middle (part (iii) of Corollary 1). This

contrasts with the logic from Section 3, in which seniority was only valuable for weak

candidates. The broad conclusion is that the potential for non-stationary term limits

to incentivize suboptimal talent retention by the voter is ampli�ed in a world of

strategic entry.

4.3 Optimal Term Limits

Finally, we provide a short discussion of how the optimal term limits change in a

world of strategic entry as we vary two parameters of the model: the cost of entry,

c, and the probability of politicians being biased, µ. Note that as c → 0, the model

converges to the case of exogenous challenger entry (Section 3).

To summarize the insights from Sections 3 and 4, term limits a�ect the voter's

welfare, V , through four channels. First, term limits prevent optimal retention of

talented incumbents. Second, they limit the scope for rent extraction by limiting the

implicit bargaining horizon of each election. (These two e�ects are present even when

entry is exogenous.) Third, they increase entry by removing from o�ce incumbents

who would otherwise deter competition and be reelected inde�nitely. Fourth, they

decrease entry by limiting a challenger's maximum tenure, hence her expected rents.

(These two e�ects are speci�c to the case of strategic entry.)

Term limits increase welfare through the second and third e�ects and decrease

it through the �rst and fourth. It is di�cult to determine in general which e�ects

dominate. We give some partial results and intuition supported by simulations.

The following Proposition is a partial analog of Proposition 3 for the case of

strategic entry.

Proposition 7. Let c0 = b
2
> 0. Then, if a one-term limit is welfare-superior to

another term limit (pk)k≥1 in the game with exogenous entry, a one-term limit is also

welfare superior to (pk)k≥1 under strategic entry whenever c < c0. In particular, if

µ ≥ 1
2
, a one-term limit is optimal among all stationary term limits if c < c0.

Proposition 7 says that, compared to the exogenous entry case, the scales tilt

further in favor of a one-term limit when c is positive but small enough. The reason

is that, so long as c < b
2
, it is always worthwhile to run in open elections, that is,

q0 = 1; a one-term limit eliminates the possibility of entry deterrence (incumbents
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never run for reelection so they can't deter entrants) and gives the same welfare as

when c = 0, whereas other term limits must become weakly worse (compared to when

c = 0) due to deterrence.

Di�erent forces are at work for high c. When c is high enough that challengers

drop out of open elections, weak term limits may be needed to incentivize entry by

increasing the potential rewards from running. In fact, for high c, the optimal term

limits may be weaker than under exogenous entry, because the need to boost rewards

eventually dominates concerns about limiting rent extraction.
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Figure 4: Welfare and entry as a function of p for b = 2, µ = 1, δ = 0.85, c ∈
{0, 1, 1.5, 2.5}, f(θ) = 3θ2

Figure 4 shows numerical results which illustrate this intuition, showing how V

varies under p-stationary limits as a function of p for di�erent values of c, under

the assumption µ = 1. First, for µ close to 1, a one-term limit (p = 0) is optimal

even without strategic entry (c = 0), but becomes even more desirable when c is

intermediate (compare V c=0 to V c=1). Second, regardless of µ, a high p (all the way

up to p = 1) may be optimal when c is very high, as challengers must be enticed to

enter open elections.

Finally, in Figure 5, we illustrate numerical results comparing the welfare proper-

ties of stationary and classic term limits as c varies.24 (Stationary limits are plotted

by mapping p to 1
1−p , the expected maximal tenure. To �ll in the graph for classic

term limits, we use �fractional� (m + p)-limits where m terms are allowed, followed

by an (m + 1)-th term with some probability p.) The results of simulations show

24For stationary term limits, the numerical solution can be computed using the analytical results
in the paper. For classic term limits, the simulation constructs a solution as in Proposition 6 and
iterates on U∗, V and Uk until convergence is reached. For all parameters used the limit is unique.
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Figure 5: Welfare under stationary and classic term limits; b = 2, µ = 1, δ = 0.85,
c ∈ {0.5, 1.5}, F ∼ U [0, 1]

that, except for when a one-term limit is optimal (attainable as either p = 0 or

m = 1), stationary term limits are welfare-superior to classic term limits. A tentative

intuition is that this is because classic term limits create stronger incentives for sub-

optimal retention (because the functions Uk(θ) depend on k and are non-monotonic),

and because they generate incumbency advantage that deters entry against strong

incumbents even more than in the stationary case.

One last observation concerning welfare e�ects is that, even when the optimal term

limits with and without strategic entry coincide, the intertemporal considerations

often di�er. Under exogenous entry, Vk(θ) is always increasing in θ�it is always

preferable to go into a closed election with a stronger incumbent. Thus, in the absence

of term limits, the voter's continuation payo� increases over time, converging to V (1)

as t → ∞. Hence, a social planner more patient than the voter (δ > δ) may favor

weaker term limits than the voter wants. When entry is strategic, in contrast, Vk(θ)

is non-monotonic. In the extreme case of µ = 1 and no term limits, if the equilibrium

is type 2 or 3, then the voter's continuation payo� eventually converges to V (1) = 0.

Hence, a patient social planner would favor stronger term limits than the voter.

5 Flexible Term Limits and Regime Change

So far, we have focused on the ex ante choice of �xed term limits. This represents

voters (or a social planner) choosing a constitution before the game begins, and before
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the likely incumbents are known; afterwards, the constitution is unchangeable.

However, many attempts to change term limits occur in a di�erent context. The

push for reform is often driven by a popular incumbent that would need a consti-

tutional amendment to run again. For example, Hugo Chávez came to power in

Venezuela in 1999. In 2009, during his purported last term, he abolished term limits

in a referendum, after which he was reelected in 2013. In Argentina, prior to 1994,

presidents were restricted to a single six-year term. Elected in 1989, Carlos Menem

engineered a constitutional reform that changed the maximum to two four-year terms,

allowing him to run again in 1995. During his second term he campaigned unsuccess-

fully to extend the limit to three terms. Similarly, Fernando Cardoso in Brazil and

Álvaro Uribe in Colombia extended their respective limits from one four-year term to

two.25 The common theme in these examples is that voters know who the incumbent

will be if the term limits are relaxed.

In this section, we sketch a version of the model allowing for this sort of discretional

change of rules. For brevity we will restrict ourselves to the case µ = 1. Concretely,

we will model �exible term limits as follows: the default rule is a one-term limit but,

after each election, the voter can choose in a referendum to override the rule and let

the incumbent run for reelection this time; the incumbent's right to run again must

be renewed every time.26

1
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θ θ0 θ1

θ

U(θ)
V (θ)
q(θ)
V

Figure 6: Equilibrium with �exible term limits

25For an in-depth discussion of the Latin American case, see Carey (2003).
26A possible alternative is persistent regime change: there is initially a one-term limit, but the

incumbent in each period can call for a referendum to abolish term limits permanently. The gen-
eral logic of the solution is the same, but this variant has di�erent intertemporal implications, as
incumbents may become entrenched once term limits are removed.
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The way the voter uses �exible term limits is straightforward. Since she cannot

commit, she lets an incumbent of ability θ run again i� V (θ) ≥ V . This leads to the

following equilibrium:

Proposition 8. Consider the game with �exible term limits and µ = 1. The MPE

may be of type 1, 2, or 3. In a type 1 equilibrium, there are 0 < θ < θ0 < 1 such

that 0 < q(θ) < 1 for θ > θ0 and candidates can run again if θ ∈ [θ, 1]. In a type 2

equilibrium, there are 0 < θ < θ0 < θ1 < 1 such that q(θ) = 1 for 0 ≤ θ ≤ θ0, q(θ)

is decreasing between θ0 and θ1, and drops discontinuously to q(θ) = 0 for θ > θ1.

Candidates are allowed to run again if θ ∈ [θ, θ1]. In a type 3 equilibrium, q ≡ 0.

In general the voter discards bad politicians (with θ < θ) and keeps good ones.

However, when competition against strong candidates is low (in a type 2 equilibrium),

the best candidates (with θ > θ1) are also discarded as they are, in e�ect, dangerous.

If allowed to run, such candidates would deter entrants and thus leave the voter no

choice but to reelect them; hence, the voter will bar their reelection bid in the �rst

place.27 This is illustrated in Figure 6.

In terms of welfare, �exible term limits may be better or worse than the �xed

term limits from the main model, because the two types of schemes di�er in two

ways. On the one hand, �exible term limits allow the voter to condition on θ�

they grant the freedom to target undesirable incumbents only. On the other hand,

the voter, being unable to commit, decides who to keep based on the �greedy� rule

V (θ) > V , ignoring that such decisions a�ect challengers' incentives to enter. Thus,

when weak term limits would be ex ante optimal (because the prize must be increased

to promote entry), the voter will still be tempted to kick out entrenched incumbents.

But challengers will anticipate this and choose not to run. If anything, the sin of

�exible term limits is to give voters too much freedom to avoid exploitation.

6 Conclusions

We study the optimal design of term limits in a world where politicians are tempted to

choose policies disliked by the median voter, and where challengers may be less likely

27This is reminiscent of Athenian ostracism, whereby citizens could preemptively exile other citi-
zens that might become too powerful and pose a threat to the state (Aristotle and Rackham, 1935,
chap. 22).
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to run if their probability of winning is low. Although the interplay between term

limits and welfare outcomes is complex, the model highlights a few general themes.

First, term limits may be valuable as a tool for disciplining incumbents, even

without strategic entry: just by bringing the continuation values from di�erent can-

didates closer together, term limits can reduce opportunities for exploitation and

improve welfare.

Second, the presence of strategic entry usually increases the need for term limits�

in particular, when the cost of entry is intermediate, so that challengers are willing

to enter open elections but unwilling to face a strong incumbent (a plausible case).

However, the result is reversed when the cost is very high: in that case term limits

should be relaxed so as to entice politicians to compete for a bigger prize.

Third, the structure of term limits matters. Conventional term limits induce

voters to condition on seniority and generate arti�cial incumbency advantage or dis-

advantage. In particular, a two-term limit makes strong incumbents unbeatable in

their reelection bid, even by equally quali�ed challengers, which in turn discourages

entry and lowers welfare. For these reasons, stationary term limits are often welfare-

superior. Naturally, stochastic term limits are di�cult to implement in practice.

We conclude with some comments about �robustness checks� and avenues for fur-

ther work.

The assumption of quadratic policy payo�s for the politicians is only for simplic-

ity; we could use any concave function. As for the voter, we could relax either the

assumption of quadratic utility or the assumption of a single voter, but not both.

The reason is that, with a continuum of voters, the median voter is always decisive

(hence, equivalent to a representative voter) in this dynamic setting if the voters

have quadratic preferences (see Banks and Duggan, 2006), but not otherwise. The

assumption that candidates only care about policies while they are in o�ce simpli�es

some of the proofs of Proposition 5 and Lemma 1 but is not essential; if we assume

candidates care about policies even after they lose or fail to run, all the results go

through, with the caveat that Lemma 1 would only hold for γ close enough to zero.

(For large γ, a challenger may want to run against a strong incumbent to prevent

very bad policies from being implemented.)

We take seriously the notion that voters are forward-looking; this assumption is

central to the results. It is plausible that voters would pay attention to expected

continuations sometimes in practice, but perhaps the model expects too much ra-
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tionality from them. Assuming that the voter is myopic (formally, δv = 0) results

in a model that is quite tractable but yields very di�erent results. In that case,

with exogenous entry, no term limits are always optimal, because the policy rents a

winner can extract are independent of continuation values. In contrast, when entry

is strategic, term limits become important, because the social planner is now more

concerned about incumbents becoming entrenched, and voters do not protect against

this. Finally, talent retention is always optimal (the higher-θ candidate always wins);

in particular, non-stationary limits no longer generate incumbency advantage or dis-

advantage.

Our model intentionally does not assume that incumbents can build up ability or

de facto power over time, in order to isolate e�ects driven solely by �fair� electoral

competition. But this is a relevant force in practice and worth integrating into the

framework.

Finally, while in this paper we consider term limits as a solution to political

agency problems, other institutional innovations may be helpful as a complement or

substitute to them. For example, the incumbent could be required to perform at a

certain level to be able to stand for reelection (Gersbach and Liessem, 2008) or to

earn a certain supermajority of the vote to be reelected (Gersbach and Müller, 2017).

However, no such addition to the model is likely to bring us all the way to the �rst-

best (xt = 0 for all t and challengers always enter) unless the institution can somehow

condition �nely on the candidates' abilities.
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A Appendix

Proof of Proposition 1. Note that if Uki(θi) − λx2
it > Ukj(θj) − λx2

jt, then the voter

must elect i, and vice versa. This follows from the de�nition of Uk(θ).

Suppose that i is from party L and j from R. If i is biased, we can verify that

the described actions are compatible with equilibrium: given that xjt = 0 and the

voter is assumed to choose i when indi�erent, i can win by o�ering any x such that

Uki(θi)−λx2 ≥ Ukj(θj), or equivalently |x| ≤
√

Uki (θi)−Ukj (θj)

λ
. Then i's optimal o�er is

the minimum of this set, which leaves the voter indi�erent: x∗ = −
√

Uki (θi)−Ukj (θj)

λ
.28

Given i's o�er, j cannot win, so she is indi�erent between all her actions.

It is also an equilibrium for j to choose any mixed strategy that makes x∗ optimal

for i, with i's and the voter's strategies unchanged. These equilibria are payo�-

equivalent to the one presented. There are no equilibria in which i plays x∗ and does

not always win�if the voter elected j with positive probability on the equilibrium

path, i would deviate closer to 0.

Suppose now that there is a (possibly mixed) equilibrium in which i's strategy

is not to choose x∗ w.p. 1. Because o�ering any x ∈ (x∗,−x∗) guarantees a win

with payo� b − γ(x + I)2 + δW (where W is a shorthand for i's payo�s from future

periods), i's payo� from any policy in the support of her strategy must be at least

b− γ(x∗ + I)2 + δW . Policies x < −I are also dominated by −I. Hence the support
of i's strategy must be contained in [−I, x∗]. Let P > 0 be the probability that i

plays x < x∗, and let x be the in�mum of the support of i's strategy. j can guarantee

a payo� (b − γI2)P > 0 by o�ering xjt = 0, hence any policy in the support of her

strategy must pay at least this much. Let x ∈ [0, I] be the supremum of the support

of j's strategy. If Uki(θi)−λx2 > Ukj(θj)−λx2 then j would get payo� 0 from playing

any policy in a neighborhood of x, a contradiction; if the reverse strict inequality

holds, i would get 0 from playing any policy in a neighborhood of x, a contradiction.

If there is equality, for i, j to both get payo�s bounded away from zero from playing

strategies near x, x respectively, it would have to be that they are both playing x,

x respectively with positive probability. But then both would pro�t by deviating to

policies slightly closer to zero, a contradiction.

Finally, if i is unbiased, then she can both guarantee a win and get her highest

28This is also better than o�ering a more extreme x, since losing gives i a payo� of 0, while winning
pays at least b− γI2 > 0.
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possible �ow payo� at time t by o�ering xit = 0. j's strategy is irrelevant.

Proof of Proposition 2. (i) The existence and uniqueness follow from applying the

Contraction Mapping Theorem to the argument presented in the text. Brie�y, let Û1
0 ,

Û2
0 be two conjectured values of U0, drawn from the domain of bounded Lebesgue-

measurable functions from [0, 1] to R, and denote ‖Û1
0 − Û2

0‖∞ = ∆. Denote by U1
k ,

U2
k , V

1
k , V

2
k the results of calculating Uk, Vk from Equations 3, 4 and 5 under the

conjecture that U0 = Û1
0 or Û2

0 , respectively. We will use the following Lemma:

Lemma 2. Let a, a′ : [0, 1]→ R be Lebesgue-measurable bounded functions and H1, H2

be cdfs. Then, if ‖a− a′‖∞ ≤ ∆,

|E [max(a(x), a(y))|x ∼ H1, y ∼ H2]− E [max(a′(x), a′(y))|x ∼ H1, y ∼ H2] | ≤ ∆, and

|E [min(a(x), a(y))|x ∼ H1, y ∼ H2]− E [min(a′(x), a′(y))|x ∼ H1, y ∼ H2] | ≤ ∆.

Additionally, for any x0 ∈ R,

|E [max(x0, a(y))|y ∼ H2]− E [max(x0, a
′(y))|y ∼ H2] | ≤ ∆ and

|E [min(x0, a(y))|y ∼ H2]− E [min(x0, a
′(y))|y ∼ H2] | ≤ ∆.

Proof. Because ‖a− a′‖∞ ≤ ∆, a(z) ≤ a′(z) + ∆ for all z. Hence max(a(x), a(y)) ≤
max(a′(x) + ∆, a′(y) + ∆) = max(a′(x), a′(y)) + ∆. Taking expectations,

E [max(a(x), a(y))|x ∼ H1, y ∼ H2] ≤ E [max(a′(x), a′(y))|x ∼ H1, y ∼ H2] |+ ∆.

Applying the same argument with a and a′ reversed yields the �rst inequality. The

argument for minimum functions is analogous. The third and fourth inequalities are

special cases with, e.g., a(x) ≡ x0 and any H1.

Suppose pm = 0. Applying Lemma 2 to Equation 5, we get |V 1 − V 2| ≤ ∆;

‖U1
m−1 − U2

m−1‖ ≤ δ∆; ‖V 1
m−1 − V 2

m−1‖ ≤ ∆; ‖U1
m−2 − U2

m−2‖ ≤ δ∆; and eventually

‖U1
0 − U2

0‖ ≤ δ∆. Hence the mapping Û0 7→ U0 is a contraction.

(ii) This follows from showing that the mapping in part (i) preserves continuity and

monotonicity (i.e., if Û0 is continuous and (strictly) increasing, then U0 is continuous

and (strictly) increasing) and repeating the argument of part (i) with the domain

restricted to the space of continuous and (strictly) increasing bounded measurable

functions from [0, 1] to R.
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(iii) Under p-stationary limits, Equations 3 and 4 become U(θ) = θ+ δpV (θ) + δ(1−
p)V and V (θ) = µE [min(U(θ), U(θ′))|θ′ ∼ F ] + (1 − µ)E [max(U(θ), U(θ′))|θ′ ∼ F ]

respectively. Di�erentiating with respect to θ yields

U ′(θ) = 1 + δpV ′(θ)

V ′(θ) = U ′(θ) [µ(1− F (θ)) + (1− µ)F (θ)]

(Note that in calculating V ′(θ) we use that P (U(θ) ≥ U(θ′)|θ′ ∼ F ) = F (θ),

which follows from U being strictly increasing.) Rearranging we obtain U ′(θ) =
1

1−δp[µ+(1−2µ)F (θ)]
and V ′(θ) = µ+(1−2µ)F (θ)

1−δp[µ+(1−2µ)F (θ)]
.

Next we calculate U(0), V (0) and V , which together with the above amounts to a

full characterization of the value functions. By Equation 3, U(0) = δpV (0)+δ(1−p)V .
By Equation 4, V (0) = µU(0) + (1 − µ)E(U(θ′)|θ′ ∼ F ). Plugging in Equation 3,

and using that E(V (θ′)|θ′ ∼ F ) = V by construction, this becomes

V (0) = µ(δpV (0) + δ(1− p)V ) + (1− µ)E(θ′ + δpV (θ′) + δ(1− p)V |θ′ ∼ F )

V (0) = µ(δpV (0) + δ(1− p)V ) + (1− µ)(E(θ′) + δV )

V (0) =
(δ − δµp)V + (1− µ)E(θ′)

1− δpµ
, U(0) =

(δ2p(1− µ) + δ(1− p))V + δp(1− µ)E(θ′)

1− δpµ

We can now calculate V :

V = E(V (θ)|θ ∼ F ) =

∫ 1

0

V (θ)f(θ)dθ = V (1)F (1)− V (0)F (0)−
∫ 1

0

V ′(θ)F (θ)dθ

=

∫ 1

0

V ′(θ)dθ −
∫ 1

0

V ′(θ)F (θ)dθ + V (0) =

∫ 1

0

V ′(θ)(1− F (θ))dθ +
(δ − δµp)V + (1− µ)E(θ)

1− δpµ

V =
1− δpµ
1− δ

[∫ 1

0

V ′(θ)(1− F (θ))dθ +
(1− µ)E(θ)

1− δpµ

]
V =

1− δpµ
1− δ

∫ 1

0

µ+ (1− 2µ)F (θ)

1− δp [µ+ (1− 2µ)F (θ)]
(1− F (θ))dθ +

(1− µ)

1− δ

∫ 1

0

(1− F (θ))dθ

V =
1

1− δ

∫ 1

0

1− δpµ+ (1− δp)(1− 2µ)F (θ)

1− δp [µ+ (1− 2µ)F (θ)]
(1− F (θ))dθ (6)

(iv) Suppose that Vm−1(θ) > V . Then, by Equation 3, Um−2(θ) > Um−1(θ). By

Equation 4, Vm−2(θ) > Vm−1(θ) > V . Iterating, we �nd Vk(θ) is decreasing in k for
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all k. Analogously, if Vm−1(θ) < V , then Vk(θ) is increasing in k.

Now note that if there is θ∗ ∈ (0, 1) with Vm−1(θ∗) = V , then by the same

argument Vk(θ∗) = V for all k and Uk(θ
∗) is constant in k. And from part (ii) we

know Vm−1(θ) is increasing in θ, so Vm−1(θ) > Vm−1(θ∗) = V for all θ > θ∗ and

Vm−1(θ) < Vm−1(θ∗) = V for all θ < θ∗. The result follows.

To �nish we must show that such a θ∗ exists. Suppose not. Because Vm−1 is

continuous (part (ii)), either Vm−1(θ) ≥ V for all θ or Vm−1(θ) ≤ V for all θ. WLOG,

suppose the former. Let V0(θ) be the voter's expected utility from a hypothetical

election between two challengers, one known to have ability θ and the other of un-

known ability θ′ ∼ F . The previous argument implies V0(θ) ≥ V for all θ, and by

part (ii), V0(θ) > V for all θ > 0. But V = E(V0(θ)|θ ∼ F ), a contradiction.

Proof of Proposition 3. For parts (i) and (ii), note that the integrand in Equation 6

can be rewritten as

(1− F (θ))

[
1 +

(1− 2µ)F (θ)

1− δp [µ+ (1− 2µ)F (θ)]

]
.

Here µ+ (1− 2µ)F (θ) ranges between F (θ) and 1− F (θ) as µ ranges between 0 and

1, i.e., it is always positive, whereas (1−2µ)F (θ) is positive when µ < 1
2
but negative

when µ > 1
2
. Then, for all θ, the derivative of this expression with respect to p is

positive if µ < 1
2
, zero if µ = 1

2
and positive if µ > 1

2
. Hence, from Equation 6, the

same is true of V .

This argument also proves part (iii) within the domain of stationary limits. For

term limits with �nite horizon, we leverage the fact that, if µ = 1
2
, then µmin(x, y) +

(1 − µ) max(x, y) ≡ x+y
2
. Then V = E(U0(θ)|θ ∼ F ) and for all θ, k, Vk(θ) =

Uk(θ)
2

+ E(U0(θ′)|θ′∼F )
2

= Uk(θ)+V
2

. We now do backwards induction on k. Denote θ =

E(θ|θ ∼ F ) and Uk = E(Uk(θ)|θ ∼ F ). For k = m − 1, Um−1(θ) = θ + δV , so

Um−1 = θ+ δV . Now suppose Uk = ak
θ

1−δ + (1− ak)V for some ak > 0 (in particular

am−1 = 1− δ). Then Uk−1 = θ+ δpk
2
Uk + δ

(
1− pk

2

)
V , i.e., Uk−1 takes the same form

with ak−1 = 1− δ + δpk
2
ak. Iterating, we end up with

V = E(U0(θ)|θ ∼ F ) = U0 = a0
θ

1− δ
+ (1− a0)V

for some a0 > 0, whence V = θ
1−δ . We can also check that this is the same welfare

obtained under any p-stationary limit from Equation 6.
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Proof of Proposition 4. We will �rst show that U(θ) is minimized at θ = 0. For the

sake of contradiction, suppose not. Let θ∗ > 0 be such that U(θ∗) is minimal.29 Let

∆ = U(0)− U(θ∗). By Lemma 1, either T (0) < T (θ∗), in which case q(0) ≤ q(θ∗), or

T (0) = T (θ∗) = 0, in which case q(0) = q(θ∗) = 0�in particular q(0) ≤ q(θ∗). Note

that U(θ∗) = θ∗ + δpV (θ∗) + δ(1− p)V , where

V (θ∗) = µU(θ∗) + (1− µ) [E(U(θ′)|θ′ ∼ F )q(θ∗) + U(0)(1− q(θ∗))]

=⇒ U(θ∗) =
θ∗ + δp(1− µ) [E(U(θ′)|θ′ ∼ F )q(θ∗) + U(0)(1− q(θ∗))] + δ(1− p)V

1− δpµ
.

(We have used that min(U(θ∗), U(θ′)) ≡ U(θ∗) and max(U(θ∗), U(θ′)) ≡ U(θ′), by

assumption.) Similarly U(0) = δpV (0) + δ(1− p)V , where

V (0) ≤ µU(0) + (1− µ) [E(max(U(0), U(θ′))|θ′ ∼ F )q(0) + U(0)(1− q(0))]

=⇒ U(0) ≤ δp(1− µ) [E(max(U(0), U(θ′))|θ′ ∼ F )q(0) + U(0)(1− q(0))] + δ(1− p)V
1− δpµ

.

(We have used that min(U(0), U(θ′)) ≤ U(0) and max(U(0), U(0)) = U(0).) Now note

that E(max(U(0), U(θ′))|θ′ ∼ F ) − E(U(θ′)|θ′ ∼ F ) ≤ ∆ and U(0) − E(U(θ′)|θ′ ∼
F ) ≤ ∆. Then U(0)− U(θ∗) ≤ −θ∗+δp(1−µ)q(θ∗)∆

1−δpµ < ∆, a contradiction.

Now suppose that there are θ < θ′ such that U(θ) > U(θ′) and denote U(θ) −
U(θ′) = ∆ > 0. By the same argument as before, q(θ) ≤ q(θ′). Hence

U(θ)− U(θ′) = θ − θ′ + δp(V (θ)− V (θ′)) < δp(V (θ)− V (θ′))

Now, if q(θ) = q(θ′), we obtain from Lemma 2 that V (θ)− V (θ′) ≤ ∆, hence U(θ)−
U(θ′) < δp∆, a contradiction. If q(θ) < q(θ′), the same conclusion still holds because

V (θ) is increasing in q(θ) (this follows from the fact that U is minimized at 0):

denoting by Ṽ (θ) what V (θ) would be if θ faced challengers with probability q(θ′)

rather than q(θ), we have V (θ)− V (θ′) ≤ Ṽ (θ)− V (θ′) ≤ ∆ and the same argument

applies.

Proof of Proposition 5. The proof proceeds as follows. First, we will argue that any

SSMPE must have the properties described in the Proposition and be of type 1, 2,

3 or 4. We will then show that the equilibrium behavior and value functions are

29An analogous argument can be written if the minimum is not attained, by choosing values of θ
such that U(θ) is close to the in�mum of U .
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uniquely determined given values of θ0, θ1, q(0) and q0 (but only some such choices

will in principle lead to an equilibrium), and calculate the value functions. Finally

we will show how to pin down θ0, θ1, q(0) and q0.

Characterization

By Proposition 4, U(θ) is nondecreasing. Combining this, Lemma 1, and the

assumption that ties are broken randomly (r(θ, θ′) = 1
2
if U(θ) = U(θ′)), we conclude

that T (θ) is weakly decreasing in θ, and constant exactly where U(θ) is constant (i.e.,

if U(θ) = U(θ′) then T (θ) = T (θ′), and if U(θ) < U(θ′) then T (θ) > T (θ′)�note that

T (θ) = T (θ′) = 0 is not possible because T (θ) > 0 if θ < 1).

Let A = {θ ∈ [0, 1] : T (θ) = c}. By the above argument U(θ) must be constant

across all θ ∈ A. Because T is nonincreasing, if A is nonempty, it must be an interval.

The analog of Equation 4 with strategic entry (and under stationary limits) is

V (θ) = µ [q(θ)E [min(U(θ), U(θ′))|θ′ ∼ F ] + (1− q(θ))U(0)]

+(1− µ) [q(θ)E [max(U(θ), U(θ′))|θ′ ∼ F ] + (1− q(θ))U(θ)] . (7)

Note that U(θ) cannot be constant a.e. (If it were, V (θ) ≡ V (0) would also be

constant, then U(θ) = θ + δpV (0) + δ(1 − p)V would be strictly increasing.) Then

V (θ) is a strictly increasing function of q(θ) (in the sense of solving for U(θ) and

V (θ) by applying the Contraction Mapping Theorem to Equations 3 and 7, taking

q(θ), V and U(θ′) for θ′ 6= θ as �xed). It follows that q(θ) cannot be discontinously

decreasing, i.e., we cannot have limθ↗θ0 q(θ) > limθ↘θ0 q(θ), because V (θ) would then

have a discontinuous drop at θ0, and so would U(θ), contradicting Proposition 4. Note

also that U(θ) cannot increase discontinuously unless q(θ) increases discontinuously

at the same point. But this is impossible: if θ < θ′ and U(θ) < U(θ′) then, by Lemma

1, either T (θ) > c, so q(θ) = 1, or T (θ′) < c, so q(θ′) = 0�either way q(θ) ≥ q(θ′).

Hence U is continuous.

There are then three possible cases. First, T (θ) > c for all θ ∈ [0, 1), in which case

q(θ) = 1 for all θ. This case is incompatible with equilibrium because it implies U(θ) is

strictly increasing everywhere by Proposition 2, but this means that incumbents with

θ near 1 are almost unbeatable, i.e., T (θ) −−→
θ→1

0, a contradiction. Second, T (θ) < c

for all θ ∈ (0, 1], in which case q(θ) = 0 for all θ�a type 4 equilibrium. Third,

T (θ) = c for some θ ∈ (0, 1) or T (θ) > c > T (θ′) for some θ < θ′. In this case A must
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be an interval with positive measure, as otherwise q(θ) would drop discontinuously

from 1 to 0 where T (θ) crosses c (because we can only have q(θ) ∈ (0, 1) if T (θ) = c).

We then de�ne θ0 = inf A and θ1 = supA. We say the equilibrium is type 1 if

θ1 = 1, type 3 if θ0 = 0, and type 2 otherwise (as noted before, U cannot be constant

everywhere so we cannot have θ0 = 0 and θ1 = 1).

For θ < θ0, we can prove U , V are increasing as well as show that U ′(θ) =
1

1−δp[µ+(1−2µ)F (θ)]
and V ′(θ) = µ+(1−2µ)F (θ)

1−δp[µ+(1−2µ)F (θ)]
in the same way as in part (iii) of

Proposition 2.

For θ ∈ [θ0, θ1], we know U(θ) is constant, i.e., U ′(θ) = 0, which implies, because

U(θ) = θ + δpV (θ) + δ(1 − p)V , that V ′(θ) = −1
δp
. Plug in U(θ) = U(θ0) and

V (θ) = V (θ0)− θ−θ0
δp

into Equation 7 to obtain

V (θ0)− θ − θ0

δp
= µ [q(θ)E [min(U(θ0), U(θ′))|θ′ ∼ F ] + (1− q(θ))U(0)]

+(1− µ) [q(θ)E [max(U(θ0), U(θ′))|θ′ ∼ F ] + (1− q(θ))U(θ0)]

=⇒ − 1

δp
= q′(θ) [µ (E [min(U(θ0), U(θ′))|θ′ ∼ F ]− U(0)) +

+ (1− µ) (E [max(U(θ0), U(θ′))|θ′ ∼ F ]− U(θ0))] . (8)

It follows that q(θ) decreases linearly within [θ0, θ1].

Finally, for θ > θ1, q(θ) = 0, so V (θ) = µU(0) + (1 − µ)U(θ). Combining this

with Equation 3, we �nd U(θ) = θ + δpµU(0) + δp(1 − µ)U(θ) + δ(1 − p)V , or

U(θ) = θ+δpµU(0)+δ(1−p)V
1−δp(1−µ)

, and V (θ) = (1−µ)θ+µU(0)+δ(1−p)(1−µ)V
1−δp(1−µ)

. In particular U ′(θ) =
1

1−δp(1−µ)
, V ′(θ) = 1−µ

1−δp(1−µ)
.

Calculating the value functions

We will now derive explicit expressions for U(θ), V (θ) and V , taking θ0, θ1, q(0)

and q0 as given.

Let Ũ(θ) = U(θ) − U(0). Because U is continuous and we have expressions for

U ′(θ) for θ < θ0, θ ∈ (θ0, θ1) and θ > θ1, we can calculate Ũ(θ) as
∫ θ

0
U ′(θ′)dθ′.

Let us then calculate U(0). By Equation 3, U(0) = δpV (0) + δ(1 − p)V . By

Equation 7, V (0) = (µ + (1 − µ)(1 − q(0)))U(0) + (1 − µ)q(0)E(U(θ)|θ ∼ F ) =

U(0) + (1− µ)q(0)E(Ũ(θ)|θ ∼ F ). Substituting and rearranging we �nd

U(0) =
δpq(0)(1− µ)E(Ũ(θ)|θ ∼ F ) + δ(1− p)V

1− δp
.
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Next, we calculate V as follows: V = q2
0A+ 2q0(1− q0)B + (1− q0)2C, where

A = µE [min(U(θ), U(θ′))|θ, θ′ ∼ F ] + (1− µ)E [max(U(θ), U(θ′))|θ, θ′ ∼ F ] =

= (2µ− 1)E [min(U(θ), U(θ′))|θ, θ′ ∼ F ] + 2(1− µ)E [U(θ)|θ ∼ F ]

B = µU(0) + (1− µ)E [U(θ)|θ ∼ F ] , C = U(0)

Equivalently we can write V = U(0) + q2
0Ã+ 2q0(1− q0)B̃, where

Ã = (2µ− 1)E
[
min(Ũ(θ), Ũ(θ′))|θ, θ′ ∼ F

]
+ 2(1− µ)E

[
Ũ(θ)|θ ∼ F

]
B̃ = (1− µ)E

[
Ũ(θ)|θ ∼ F

]
Plugging in Ã, B̃ and U(0) and rearranging, we �nd that

1− δ
1− δp

V = q2
0(2µ− 1)E

(
min(Ũ(θ), Ũ(θ′))

)
+

(
δp(1− µ)q(0)

1− δp
+ 2q0(1− µ)

)
E
(
Ũ(θ)

)
.

Now recall that E
(

min(Ũ(θ), Ũ(θ′))|θ, θ′ ∼ F
)

= E
(
Ũ(θ)|θ ∼ 1− (1− F )2

)
. In

addition, for any cdf G with density g s.t. G(0) = 0 and G(1) = 1,

E
(
Ũ(θ)|θ ∼ G

)
=

∫ 1

0

Ũ(θ)g(θ)dθ = Ũ(1)−
∫ 1

0

Ũ ′(θ)G(θ)dθ

=

∫ 1

0

Ũ ′(θ)dθ −
∫ 1

0

Ũ ′(θ)G(θ)dθ =

∫ 1

0

Ũ ′(θ)(1−G(θ))dθ.

Applying this result,

E
(

min(Ũ(θ), Ũ(θ′))|θ, θ′ ∼ F
)

=

∫ θ0

0

(1− F (θ))2

1− δp [µ+ (1− 2µ)F (θ)]
dθ +

∫ 1

θ1

(1− F (θ))2

1− δp(1− µ)
dθ

E
(
Ũ(θ)|θ ∼ F

)
=

∫ θ0

0

1− F (θ)

1− δp [µ+ (1− 2µ)F (θ)]
dθ +

∫ 1

θ1

1− F (θ)

1− δp(1− µ)
dθ.

We now have expressions for U(θ), V (θ) and V in terms of the parameters as well as

θ0, θ1, q(0) and q0.

Pinning down θ1
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We can rewrite Equation 8 as

q′(θ) = − 1

δp(µE[min(Ũ(θ0),Ũ(θ′))|θ′∼F ]+(1−µ)(E[max(Ũ(θ0),Ũ(θ′))|θ′∼F ]−Ũ(θ0)))
, where

E
[
min(Ũ(θ0), Ũ(θ′))|θ′ ∼ F

]
=

∫ θ0

0

1− F (θ)

1− δp [µ+ (1− 2µ)F (θ)]
dθ

E
[
max(Ũ(θ0), Ũ(θ′))|θ′ ∼ F

]
− Ũ(θ0) =

∫ 1

θ1

1− F (θ)

1− δp(1− µ)
dθ.

We have thus expressed q′ as a function of θ0, θ1 and parameters. In particular, |q′|
is weakly increasing in θ1. With this observation we can uniquely determine θ1 as a

function of θ0 and q(0). To see how, suppose that θ1 < 1, so q(θ1) = 0. Then we must

have |q′|(θ1 − θ0) = 1 if θ0 > 0, or |q′|θ1 = q(0) if θ0 = 0. Whichever case applies, the

left-hand side of the equation is increasing in θ1, so there is a unique value of θ1 that

solves it given θ0 and q(0). (Unless the left-hand side is smaller the right-hand side

even for θ1 = 1, in which case this is the solution.)

Pinning down q0

To determine q0, consider the incentive to run in an open election. If the other

party's potential challenger is running with probability q, it is weakly optimal to run

i� qT1+(1−q)T2−c ≥ 0, where T1 is the expected reward from running when the other

challenger also runs, and T2 is the expected reward from running against a challenger

who doesn't. Note that, having assumed values of θ0 and q(0) (which pin down θ1,

hence q(θ) and Ũ), T1 and T2 are uniquely determined. By Lemma 1, T1 < T2, so

a challenger's incentive to run is decreasing in the other challenger's probability of

running. Since in equilibrium both must run with probability q0, there are three

possible cases. Either T1 ≥ c and q0 = 1, or T2 ≤ c and q0 = 0, or T1 < c < T2 and q0

is uniquely determined by the equation q0T1 + (1− q0)T2 = c, i.e., q0 = T2−c
T2−T1 .

Pinning down θ0 and q(0)

There is really only one degree of freedom in choosing θ0 and q(0), rather than

two: either θ0 > 0 and q(0) = 1 or θ0 = 0 and q(0) ∈ [0, 1].

Given values of θ0 and q(0), we have shown that θ1, q0, U(θ), V (θ), V , and T (θ)

are uniquely determined. Our construction guarantees that the objects thus found
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are compatible with equilibrium, with one exception: we have not yet checked the

challenger's entry decision. It is necessary and su�cient that T = c, where T = T (θ)

for θ ∈ [θ0, θ1]. Under the conditions provided in the Proposition, T is a decreasing

function of θ0�an intuitive fact since θ0 parameterizes the level of competition, which

should lower the expected future rents. Hence, there is a unique value of θ0 such that

T (θ0) = c, and the SSMPE is unique.

Parameter conditions are required to guarantee equilibrium uniqueness because

increasing θ0 has three e�ects on T , one of which has the �wrong� sign:

1. It increases future competition (by shifting the function q(θ) upwards), which

lowers expected tenure and rents, reducing T .

2. It shifts the set A = (θ0, θ1) upwards, making incumbents with θ ∈ A electorally

stronger. This reduces T since challengers have a lower chance of winning their

�rst election against someone with θ ∈ A.

3. Yet, conditional on winning the �rst election, these challengers-turned-incumbents

will be electorally stronger themselves by the same logic, which increases T .

T is decreasing in θ0 unless the third e�ect dominates. The conditions for equilibrium

uniqueness are checked in Appendix B.

Proof of Proposition 6. Tk(θ) is a decreasing function of Uk(θ) (Lemma 1). Then

there is a threshold U∗ such that (abusing notation) T (U∗) = c, so that qk(θ) = 1 for

Uk(θ) < U∗ and qk(θ) = 0 for Uk(θ) > U∗.

Given U∗, V and a candidate function U0(θ), we can solve for Uk(θ) with a form

of backward induction. First, Um−1(θ) = θ + δV , which is linear and increasing. If

θ1(m−2) +δV = U∗ for some θ1(m−2), then Um−2(θ) = θ+δ(µE[min(Um−1(θ), U0(θ′))]+

(1 − µ)E[max(Um−1(θ), U0(θ′))]), qm−2(θ) = 1 for θ < θ1(m−2) and Um−2(θ) = θ +

δ(µmin(Um−1(θ), U0(0)) + µmax(Um−1(θ), U0(0))), qm−2(θ) = 0 for θ > θ1(m−2). We

can proceed like this for k = m−3, . . . , 0. This argument doubles as an algorithm for

equilibrium construction: pick candidate values of U∗, V and U0(θ) and solve for an

equilibrium as above. The resulting strategy pro�le is an equilibrium i� the generated

U∗, V and U0(θ) match the conjectures.

This construction also yields the cuto�s (Ak)k. To show that lk ≤ 2m−k−1 − 1 we

argue as follows. Let h(U) be a function given by h(U) = µE[min(U,U0(θ′))|θ′ ∼
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F ] + (1 − µ)E[max(U,U0(θ′))|θ′ ∼ F ] if U < U∗ and h(U) = µmin(U,U0(0)) + (1 −
µ) max(U,U0(0)) if U > U∗. De�ne hθ(U) = θ + δh(U). Then Uk−1(θ) = hθ(Uk(θ)).

Clearly hθ(U) is smoothly increasing in θ, hence Uk(θ) = hm−1−k
θ (Um−1(θ)) is smoothly

increasing in θ, except at points of discontinuity of Uk′(θ) (k′ > k) and points where

Uk+1(θ) = U∗. If Uk+1 has lk+1 jumps, it is smoothly increasing in lk+1 + 1 intervals,

in each of which it can cross U∗ at most once. Hence Uk has at most 2lk+1 + 1 jumps,

i.e., lk ≤ 2lk+1 + 1. This plus the fact that lm−2 ≤ 1 delivers the result.

Proof of Prpoosition 7. Note that if c < c0 = b
2
then q0 = 1. The reason is that

running in an open election increases the chance of winning by at least 1
2
, which is

worth at least b
2
. Let V ((pk)k, c) be the value of V under term limits (pk)k and a

cost of entry c. By an abuse of notation V ((p, p, . . .), c) = V (p, c). Then, for all

c ∈ (0, c0), V (0, c) = V (0, 0). The reason is that, when p = 0, every election is open,

so only q0 matters for welfare. However, for any other (pk)k, V ((pk)k, c) ≤ V ((pk)k, 0)

since c > 0 results in a weakly lower q(θ) relative to q(θ) ≡ 1. Then, whenever

V (0, 0) ≥ V ((pk)k, 0) we have V (0, c) ≥ V ((pk)k, c) for all c ∈ (0, c0).

Proof of Proposition 8. Analogous to Proposition 5.
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B Supplementary Appendix (for Online Publication)

Proof of Lemma 1. Consider a challenger i who �rst runs in period t against an in-

cumbent of type (θ, k). Let R(θ′) be i's expected lifetime rents from o�ce, conditional

on winning in period t and on her ability being θ′. Let γQ(θ′) be i's expected lifetime

policy payo�s excluding period t, again conditional on winning in period t and

her ability being θ′. Let γSk(θ, θ′) be i's policy payo� in period t, conditional on

her ability being θ′ and the incumbent being type (θ, k). (Note that R(θ′), Q(θ′) are

independent of θ and k, and R, Q and S are not functions of γ.) Then

Tk(θ) =

∫ 1

0

[R(θ′) + γQ(θ′) + γSk(θ, θ
′)] rk(θ, θ

′)f(θ′)dθ′.

By Proposition 1, if the challenger wins and her ability is θ′, then with probability

1−µ she is unbiased, her policy is 0, and her policy payo� is 0; with probability µ she is

biased, her policy is ±
√

U0(θ′)−Uk(θ)
λ

, and her policy payo� is −
(
I −

√
U0(θ′)−Uk(θ)

λ

)2

.

In other words, Sk(θ, θ′) = −µ
(
I −

√
U0(θ′)−Uk(θ)

λ

)2

, which is a strictly decreasing

function of Uk(θ). Furthermore, rk(θ, θ′) is weakly decreasing as a function of Uk(θ)

for each θ′: if Uk(θ) < Uk̃(θ̃), then either Uk(θ) < U0(θ′), implying rk(θ, θ′) = 1 ≥
rk̃(θ̃, θ

′), or U0(θ′) < Uk̃(θ̃), implying rk(θ, θ′) ≥ rk̃(θ̃, θ
′) = 0. The result follows.

Proof of Proposition 5�Pinning down θ0. Under stationary limits, the expressions for

R and Q simplify to

R(θ) =
b

1− δp(1− q(θ)κ(θ))
=

b

1− δp+ δpq(θ)κ(θ)

Q(θ) = [q(θ)y1 + (1− q(θ))y0]
δp

1− δp+ δpq(θ)κ(θ)
,

where κ(θ) =
∫ 1

0
r(θ, θ′)f(θ′)dθ′ is the probability that an incumbent of ability θ loses

an election, conditional on the challenger running; and y1, y0 are the expected �ow

policy payo�s of an incumbent of ability θ if the challenger runs or does not run,

respectively. Remember also that

T θ0 =

∫ 1

0

(R(θ) + γQ(θ) + γS(θ0, θ)) r(θ0, θ)f(θ) dθ.
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Suppose �rst that the equilibrium is of type 2, and let θ1 = θ1(θ0). Then r(θ0, θ) =

0 for θ < θ0, r(θ0, θ) = 1
2
for θ ∈ [θ0, θ1] and r(θ0, θ) = 1 for θ > θ1:

T θ0 =
1

2

∫ θ1

θ0

(R(θ) + γQ(θ) + γS(θ0, θ)) f(θ) dθ+

∫ 1

θ1

(R(θ) + γQ(θ) + γS(θ0, θ)) f(θ) dθ.

Letting R∗ = ∂R
∂θ0

and so on, we then want to show that
∂T θ0
∂θ0

< 0 for all θ0, where

∂T θ0
∂θ0

=
1

2

∫ θ1

θ0

(R∗(θ) + γQ∗(θ) + γS∗(θ0, θ)) f(θ) dθ +

∫ 1

θ1

(R∗(θ) + γQ∗(θ) + γS∗(θ0, θ)) f(θ) dθ

− 1

2
(R(θ0) + γQ(θ0) + γS(θ0, θ0))f(θ0)− 1

2
θ′1(θ0)(R(θ1) + γQ(θ1) + γS(θ0, θ1))f(θ1).

Note that R∗(θ) = 0 for θ > θ1 (because q(θ)κ(θ) ≡ 0), and S(θ0, θ) = S∗(θ0, θ) = 0

for θ ∈ [θ0, θ1]. Then we need to show

1

2

∫ θ1

θ0

(R∗(θ) + γQ∗(θ)) f(θ) dθ +

∫ 1

θ1

(γQ∗(θ) + γS∗(θ0, θ)) f(θ) dθ

− 1

2
(R(θ0) + γQ(θ0))f(θ0)− 1

2
θ′1(θ0)(R(θ1) + γQ(θ1))f(θ1) < 0

Because we want to show this holds for γ low enough, it is necessary and su�cient

to prove that ∫ θ1

θ0

R∗(θ)f(θ) dθ < R(θ0)f(θ0) +R(θ1)f(θ1)θ′1(θ0) (9)

and thatQ∗(θ), Q(θ), and S∗(θ0, θ) (θ > θ1) are bounded.30 Before proceeding further,

note that R∗, Q∗ and S∗ (hence also q∗ and κ∗) must be well de�ned for our approach

to be valid. This boils down to showing that θ′1(θ0) exists, which follows from applying

the Implicit Function Theorem to the characterization of θ1 in Lemma 3.

We will �rst deal with o�ce rents. We can calculate

R∗(θ) =
bδpq(θ)κ(θ)

(1− δp+ δpq(θ)κ(θ))2

(
−q∗(θ)
q(θ)

− κ∗(θ)

κ(θ)

)
.

Here κ(θ) = 1− F (θ0)+F (θ1)
2

, so κ∗(θ) = −f(θ0)+f(θ1)θ′1(θ0)

2
, and q(θ) = θ1−θ

θ1−θ0 , so q∗(θ) =

30Because both sides of (9) are continuous in θ0, if the inequality holds strictly for all θ0, the
di�erence between the two sides is bounded away from zero.
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θ′1(θ0)(θ−θ0)+θ1−θ
(θ1−θ0)2

. A digression here will be necessary. Using our characterization of q′

and θ1 (Proposition 5�pinning down θ1), we can show that θ1 − θ0 is bounded away

from zero and θ′1 is bounded and bounded away from zero:

Lemma 3. There are m, m′, M > 0 dependent only on µ, δ, p and F such that

θ1(θ0)− θ0 ≥ m′ and θ′1(θ0) ∈ [m,M ].

Proof. Note that if θ1(θ0k)−θ0k −−−→
k→∞

0 for some sequence (θ0k)k, then in the limit we

would have |q′| ≤ 1

δpmin(µ,1−µ)
∫ 1
0 min( 1−F (θ)

1−δp[µ+(1−2µ)F (θ)]
,

1−F (θ)
1−δp(1−µ))dθ

<∞, so q′(θ1− θ0)→ 0,

a contradiction. If 1 ≥ θ1 − θ0 ≥ m′, then 1 ≤ q′ ≤ 1
m′
. θ′1 must solve q′(θ′1 −

1) +
(
∂q′

∂θ1
θ′1 + ∂q′

∂θ0

)
(θ1 − θ0) = 0, or θ′1 =

q′− ∂q′
∂θ0

q′+ ∂q′
∂θ1

. Here − ∂q′

∂θ0
= q′2 δpµ(1−F (θ0))

1−δp[µ+(1−2µ)F (θ0)]
≤

δpµ
(1−δp)m′2 and ∂q′

∂θ1
= q′2 δp(1−µ)(1−F (θ1))

1−δp+δpµ ≤ δp(1−µ)
(1−δp)m′2 . This yields the result.

Using Lemma 3 and previous results, and denoting m = min(m, 1),

−q∗(θ)
q(θ)

= − 1

q(θ)

θ′1(θ0)(θ − θ0) + θ1 − θ
(θ1 − θ0)2

≤ − 1

q(θ)

m(θ − θ0) + (θ1 − θ)
θ1 − θ0

=

= − m

q(θ)(θ1 − θ0)
− 1−m
θ1 − θ0

≤ − 1

1− θ0

(
m

q(θ)
+ 1−m

)
−κ∗(θ)
κ(θ)

=
f(θ0) + f(θ1)θ′1(θ0)

2− F (θ0)− F (θ1)
≤ f(θ0) + f(θ1)θ′1(θ0)

1− F (θ0)
.

Then we can deal with the terms involving f(θ1) as follows:∫ θ1

θ0

bδpq(θ)κ(θ)

(1− δp+ δpq(θ)κ(θ))2

f(θ1)θ′1(θ0)

(1− F (θ0))
f(θ)dθ < R(θ1)f(θ1)θ′1(θ0),

because δpq(θ)κ(θ)
(1−δp+δpq(θ)κ(θ))2

< 1
1−δp and

∫ θ1
θ0
f(θ)dθ ≤ 1− F (θ0). So it is enough to show

∫ θ1

θ0

bδpq(θ)κ(θ)

(1− δp+ δpq(θ)κ(θ))2

(
−

m
q(θ)

+ 1−m
1− θ0

+
f(θ0)

1− F (θ0)

)
f(θ)dθ < R(θ0)f(θ0).

Using that f(θ0)
1−F (θ0)

≤ φ
1−θ0 , it is enough to show that for any 0 ≤ q ≤ 1

41



(
bδpqκ

(1− δp+ δpqκ)2

(
1− m

φq
− 1−m

φ

)
f(θ0)

1− F (θ0)

)
(F (θ1)− F (θ0)) <

bf(θ0)

1− δp+ δpκ

δpqκ

(1− δp+ δpqκ)2

(
1− m

φq
− 1−m

φ

)
<

1

1− δp+ δpκ

The left-hand side is single-peaked in q with a maximum at q∗ = 1−δp
δpk

+ 2m
φ−1+m

. If

this q∗ is greater than 1, then we need

δpκ

(1− δp+ δpκ)2

(
1− 1

φ

)
<

1

1− δp+ δpκ
,

which always holds. If 0 < q∗ < 1, then the maximized value of the left-hand side

is 1
4φ

φ−1+m
(1−δp)+ 4mφ

(φ−1+m)2
δpκ

. Since m ≤ 1, 4φ
φ−1+m

≥ 4 > 1, so the required inequality

is guaranteed to hold if 4mφ
(φ−1+m)2

is at least 1. This expression is decreasing in φ

(again given m ≤ 1) and equals 4
m
> 1 if φ = 1, so there is φ∗(m) > 1 such that the

inequality holds whenever φ ≤ φ∗(m).

We now turn to policy payo�s. For θ ∈ [θ0, θ1],

Q(θ) = [q(θ)y1 + (1− q(θ))y0]
δp

1− δp+ δpq(θ)κ(θ)

=⇒ Q∗(θ) = − q(θ)y1 + (1− q(θ))y0

(1− δp+ δpq(θ)κ(θ))2
δ2p2q(θ)κ(θ)

(
q∗(θ)

q(θ)
+
κ∗(θ)

κ(θ)

)
− δp q∗(θ)(y0 − y1)

1− δp+ δpq(θ)κ(θ)
+ δp

q(θ)y1∗ + (1− q(θ))y0∗

1− δp+ δpq(θ)κ(θ)
.

f is bounded by assumption and q, κ ≤ 1. Also |Q(θ)|, |y0|, |y1| ≤ I2

1−δp . It remains

to bound y0∗ and y1∗. Using that y0 = S(0, θ), y1 =
∫ 1

0
S(θ′, θ)f(θ′)dθ, and S(θ′, θ) =

µ

(
−U(θ)−U(θ′)

λ
+ 2
√

U(θ)−U(θ′)
λ

I − I2

)
for any θ′ ≤ θ (see Lemma 1), we obtain:

y0 = µ

−I2 + 2I

√
Ũ(θ0)

λ
− Ũ(θ0)

λ

 , y0∗ = µU ′(θ0)

[
I

√
1

Ũ(θ0)λ
− 1

λ

]
,
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y1 = µ

∫ θ0

0

−I2 + 2I

√
Ũ(θ0)− Ũ(θ)

λ
− Ũ(θ0)− Ũ(θ)

λ

 f(θ)dθ,

y1∗ = µU ′(θ0)

∫ θ0

0

(
I

√
1

(Ũ(θ0)− Ũ(θ))λ
− 1

λ

)
f(θ)dθ.

Now, using that 1 ≤ U ′(θ) ≤ 1
1−δp for θ < θ0, and denoting max f = f ,

− µ

λ(1− δp)
≤ y1∗ ≤

µ

1− δp

∫ θ0

0

I

√
1

(θ0 − θ)λ
fdθ =

µ

1− δp
2If
√
θ0√

λ
≤ µ

1− δp
2If√
λ

− µ

λ(1− δp)
≤ y0∗ ≤

µ

1− δp
I

√
θ0

√
λ
.

Q∗(θ) for θ > θ1 and S∗(θ0, θ) for θ > θ1 can be bounded with similar arguments.

All of our bounds are uniform in θ0 except for the upper bound on y0∗, which is

proportional to 1√
θ0

and explodes as θ0 → 0.

We �nish our proof of equilibrium uniqueness in this region with the following

argument. If γ = 0, given values of all other parameters, there is a unique equilibrium

whenever φ < φ∗(m). Let θ∗ be the value of θ0 in this equilibrium. If θ∗ > 0, the

marginal policy payo�s that show up in ∂T
∂θ0

are bounded in a neighborhood of θ∗, and

the total policy payo�s in T (θ) are bounded everywhere (i.e., T may be nonmonotonic

near 0, but this is far from θ∗, where T crosses c). If θ∗ = 0, then T (θ∗) < c for any

γ > 0 (because policy payo�s are negative), so the equilibrium is type 3, which does

not have these issues.

Next, suppose the equilibrium is type 1. Then

T θ0 =
1

2

∫ 1

θ0

(R(θ) + γQ(θ) + γS(θ0, θ)) f(θ) dθ

∂T θ0
∂θ0

=
1

2

∫ 1

θ0

(R∗(θ) + γQ∗(θ) + γS∗(θ0, θ)) f(θ) dθ − 1

2
(R(θ0) + γQ(θ0) + γS(θ0, θ0))f(θ0)

Bounding the policy payo�s in this case is not hard (the issues that arise as θ0
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approaches zero do not apply here). We then have to show∫ 1

θ0

R∗(θ)f(θ) dθ <R(θ0)f(θ0).

We now have

q∗(θ) ≥
1− q(1)

1− θ0

, κ(θ) =
1− F (θ0)

2
=⇒ κ∗(θ) = −1

2
f(θ0), −κ∗(θ)

κ(θ)
≤ f(θ0)

1− F (θ0)
.

(The bound on q∗(θ) uses the fact that, when θ1 = 1, |q′(θ)| is decreasing in θ0�see

Proposition 5.) Arguing as before, it is enough to show

bδpqκ

(1− δp+ δpqκ)2

(
1− 1− q(1)

φq

)
f(θ0)

1− F (θ0)
(1− F (θ0)) <

bf(θ0)

1− δp+ δpκ

⇐⇒ δpqκ

(1− δp+ δpqκ)2

(
1− 1− q(1)

φq

)
<

1

1− δp+ δpκ

subject to q ≥ q(1).

Again δpqκ
(1−δp+δpqκ)2

(
1− 1−q(1)

φq

)
is single peaked in q with a maximum at q∗ =

1−δp
δpk

+ 2(1−q(1))
φ

. There are three cases. If q∗ > 1, then we need

δpκ

(1− δp+ δpκ)2

(
1− 1− q(1)

φ

)
<

1

1− δp+ δpκ
,

which always holds. If 1 > q∗ > q(1), then q∗ >
1−δp
δpk

+ 2
φ

1+ 2
φ

> q(1), and

δpq∗κ

(1− δp+ δpq∗κ)2

(
1− 1− q(1)

φ

)
=

=
1

4
(

1− δp+ δpκ
φ

(1− q(1))
) < 1

4

(
1− δp+ δpκ

φ

(
1−

1−δp
δpk

+ 2
φ

1+ 2
φ

)) =

=
1

4
(

(1− δp)
(

1− 1
φ+2

)
+ δpκ 1

φ+2

)
which is always smaller than 1

1−δp+δpκ if φ < 2.
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Finally, if q(1) > q∗, then we need

δpq(1)κ

(1− δp+ δpq(1)κ)2

(
1− 1− q(1)

φq(1)

)
<

1

1− δp+ δpκ

⇐⇒ δpq(1)κ

(1− δp+ δpq(1)κ)2

φ+ 1

φ

(
1− 1

(φ+ 1)q(1)

)
<

1

1− δp+ δpκ

The value of q(1) that maximizes the left-hand side is 1−δp
δpκ

+ 2
φ+1

, and the maximized

value of the left-hand side is φ+1
φ

1
4(1−δp)+ 4

φ+1
δpκ

. This expression is decreasing in φ and

always less than 1
1−δp+δpκ for φ = 1, so there is again a threshold φ∗ > 1 such that

the inequality holds if φ < φ∗.

The case of a type 3 equilibrium is the simplest one. The policy payo�s can be

handled as before. For o�ce rents, we need to show that∫ θ1

0

R∗(θ)f(θ)dθ < R(θ1)f(θ1),

where R∗(θ) now represents ∂R(θ)
∂θ1

. (We can't use θ0 as the parameter since it is 0,

and θ1 is more convenient than q(0).) We can, as before, show that q∗(θ) > 0, and

κ(θ) = 1− F (θ1)
2

, so κ∗(θ) = −f(θ1)
2

and −κ∗(θ)
κ(θ)

= f(θ1)
2−F (θ1)

< f(θ1). Then

R∗(θ) =
bδpq(θ)κ(θ)

(1− δp+ δpq(θ)κ(θ))2

(
−q∗(θ)
q(θ)

− κ∗(θ)

κ(θ)

)
<

b

1− δp
f(θ1)

=⇒
∫ θ1

0

R∗(θ)f(θ)dθ <
b

1− δp
f(θ1)F (θ1) <

b

1− δp
f(θ1) = R(θ1)f(θ1).

Proof of Corollary 1. Parts (i) and (ii) are immediate consequences of Proposition

6. For part (iii), note that U1(θ) = θ + δV and U0(θ) = θ + δV1(θ), so U ′1(θ) = 1

and U ′0(θ) = 1 + δV ′1(θ). For θ < θ0, V1(θ) = µE(min(U1(θ), U0(θ′))|θ′ ∼ F ) + (1 −
µ)E(max(U1(θ), U0(θ′))|θ′ ∼ F ). U ′1(θ) = 1then implies V ′1(θ), so U ′0(θ) > U ′1(θ). For

θ > θ0, V1(θ) = µmin(U1(θ), U0(0)) + (1 − µ) max(U1(θ), U0(0)). U ′1(θ) = 1 again

implies V ′1(θ) > 0 and U ′0(θ) > U ′1(θ) unless µ = 1, in which case V1(θ) = U0(0) and

U ′0(θ) = 1 = U ′1(θ).

For part (iv), if µ = 1, we will argue that U0(0) < U1(θ) for all θ. This follows

since U0(0) = δV1(0) ≤ V1(0) = V1(0) = E(min(U1(0), U0(θ′)|θ′ ∼ F ) ≤ U1(0), and
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U1 is increasing. (Note that V , U0, U1, V1 ≥ 0, since electing the weaker candidate

always gives a nonnegative �ow payo�.) Hence V1(θ) = U0(0) for θ > θ0. It also

follows that U0(0) ≤ V , as U0(0) ≤ U1(0) = δV . Hence U1(θ) ≥ U0(θ) for θ > θ0,

as V ≥ V1(θ) = U0(0) for θ > θ0. Both inequalities are strict unless V = 0, which

happens i� q0 = 0. This argument also goes through for µ in a neighborhood of 1.

There are two degenerate cases. If U∗ is above U1(1), there always is competition.

This is possible in under classic limits if c is low enough, since in an open election there

is always a positive probability of winning, and in a closed election the challenger can

always defeat the incumbent with non-negligible probability, since U0(1) > U1(1) (see

part (iv) of Proposition 2). If U∗ is below U1(0), there never is competition in a closed

election. This is possible if c is high enough.
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