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Abstract
This paper studies a model of collective action in which citizens face re-

peated opportunities to protest against a regime, and imperfectly observe the
gains from protesting at each moment. We depart from the existing literature
by assuming that citizens are partially altruistic, and hence may protest to
change the outcome (i.e., be pivotal), even when protesting yields no private
benefits. We show that “pivotal protesting” entails complex dynamic consider-
ations. Indeed, the continuation value of the status quo influences the citizens’
willingness to protest today. Thus, a mere change in expectations about the
future may trigger a revolt. The same logic can induce a pattern of protest cy-
cles, as well as introduce a novel source of inefficiency: a temptation to protest
later rather than earlier when future protesting opportunities are mildly at-
tractive leads to protests being inefficiently delayed. Thus, altruistic agents
can fall prey to a form of collective procrastination.

1 Introduction

It should not be controversial that people, in particular in their capacity as protesters,
think about the future, and that participation in mass protests is often spurred by
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the perception that a successful protest may improve future welfare; conversely, that
the state of society will deteriorate if nothing is done to change the status quo; and,
more generally, that the country stands at a crossroads.

For example, the massive 2019–2020 protests in Hong Kong were triggered by
the introduction of a proposed bill that would have allowed extraditions to mainland
China. As crowds swelled, government rhetoric hardened, and police crackdowns
intensified, protesters described being motivated by a sense that Hong Kong faced
a do-or-die fight for its future, saying to the media: “If we don’t succeed now, our
freedom of speech, our human rights, all will be gone.”1 A similar display of forward
thinking is encapsulated in the chilling slogan used by Taiwanese protesters: “Today’s
Hong Kong, tomorrow’s Taiwan.”2 Similarly, the 2013-2014 protests in Ukraine that
ultimately ousted Yanukovych were sparked by his postponing a promised integration
agreement with the European Union, a move that signaled the country would instead
seek closer ties with Russia.3 Many other examples exist.4

Yet forward-looking considerations are conspicuously absent from most formal
models of mass protest, even dynamic ones. The reason traces back to the fact that,
as the literature on protests—formal and otherwise—is well aware, protests are a
collective action problem (Olson, 1965; Lichbach, 1995): even large public benefits
cannot induce selfish citizens to undertake private costs. The most popular formal
approaches to circumventing this problem, so as to explain participation, postulate
that citizens are motivated either by private benefits or by expressive warm-glow
payoffs. As we discuss later, both assumptions yield models in which citizens behave
as if myopic in equilibrium, even when assumed to be forward-looking.

In this paper, we study a model of repeated protests, in which citizens can attack
the regime (protest, mobilize) in each of many periods, and receive information about
the potential gain from doing so in each period. Our model uses the machinery of
global games (Carlsson and Van Damme, 1993; Morris and Shin, 1998), and is in

1https://www.reuters.com/article/us-hongkong-protests-radicals/now-or-never-
hong-kong-protesters-say-they-have-nothing-to-lose-idUSKCN1VH2JT

2https://foreignpolicy.com/2014/08/19/todays-hong-kong-tomorrows-taiwan/
3https://www.nytimes.com/2013/11/22/world/europe/ukraine-refuses-to-free-ex-

leader-raising-concerns-over-eu-talks.html
4Consider the 2013 protests in Turkey, whose immediate trigger was the violent eviction of a

sit-in at Gezi park, but which responded more broadly to “creeping political authoritarianism”
(Özel, 2014), or the 2023 protests in Israel against a plan to weaken the judiciary’s influence over
policymaking.
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many ways canonical, but it presumes a novel motivation for citizens to participate
relative to the formal literature on repeated protests (Angeletos, Hellwig and Pa-
van, 2007; Little, 2017), one which—crucially—preserves a role for forward thinking
in equilibrium. Namely, we assume that citizens are partially altruistic: they put
some weight on the welfare of their fellow citizens. Under this assumption, the im-
portance of public benefits in a citizen’s benefit-cost calculation does not vanish as
the population becomes large. Even as any citizen’s chance of being pivotal goes to
zero, the impact she can have on total welfare by tipping the outcome grows without
bound. It follows that partially altruistic citizens retain agency in a large population
and thus react to expectations about the future: since the public benefit from a suc-
cessful protest is simply the gap between continuation values under regime change
and the status quo, incentives to protest respond both to the “carrot” of a better
post-revolutionary outcome and the “stick” of a status quo that is or will become
oppressive. In particular, a mere change in expectations can trigger a protest.

But this logic carries further: the citizens realize that, by successfully overthrow-
ing the regime today, they are forfeiting chances to instead do so in the future. A
successful protest thus robs all citizens of the potential gain from future protests.
Their calculus must account for this. As a result, they are more likely to attack
today if conditions for an attack are good today or if they are bad tomorrow.

Our most surprising result, however, is that when agents are imperfectly altruistic—
that is, they value others’ welfare, but less than their own—the “opportunity cost”
considerations induced by altruism can lead to excessive and inefficient delay in equi-
librium, a form of collective procrastination. More precisely, giving citizens more
opportunities to protest in the future, even less attractive ones than the current one,
can lower their equilibrium welfare by inducing a sort of “paralysis of options.” The
logic of this result is related to the intuition behind equilibrium selection in all global
games: in global games, agents can sometimes coordinate on an attack, but they
need the state of the world to be somewhat better than the bare minimum needed
to render an all-out attack profitable. A crowd in a global game thus behaves much
like a person with low motivation or willpower to exert effort. Offering such a person
an “out” in the form of a second chance can tempt her to procrastinate, leaving her
worse off. Thus, an attack may come not when it is most profitable, but rather when
there are no second chances left.

Due to the same logic, the equilibrium generally displays a pattern of protest
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cycles: like waves crashing against the shoreline, citizens eventually coordinate on an
attack, then—if unsuccessful—let several periods pass before trying again, and the
process repeats. These waves are strategic and forward-looking: citizens attack when
the anticipated delay until the next wave crashes is long enough that they become
impatient.

It is important to note that our results do not hinge on altruism per se, but on
the fact that, because of it, the citizens have agency: they do not see the aggregate
consequences of their participation as negligible. As we show in an example, similar
results arise without altruism in a finite population version of the game, where each
agent’s participation has a real chance of changing the outcome. Technically, adding
altruism to the model allows us to recover the logic of pivotality even when the
population is large. Substantively, it provides a way to account for other-regarding
preferences, community, civic duty, and other moral concerns that have long been
recognized by classical accounts of mass social movements (Lichbach, 1995; Wood,
2003) as motivating potential protesters, but which have received little attention in
the formal literature. Indeed, to our knowledge, we are the first to study a dynamic
formal model of protests with moral agents.5

2 Related Literature

The literature on social movements broadly considers two types of potential motiva-
tions for citizens to engage in costly collective action: private benefits (Olson, 1965;
Tullock, 1971), that is, material or social benefits of regime change, at least some of
which are exclusive to participants; and psychological rewards, such as frustration in
response to relative deprivation (Gurr, 1970) and “pleasure in agency” (Wood, 2003).6

Many formal models of protest assume private benefits as the citizens’ motivation
(Casper and Tyson, 2014; Tyson and Smith, 2018; Bueno De Mesquita and Shadmehr,
2023). Under this assumption, each citizen’s incentive to participate depends on the
size of the available private (i.e., excludable) benefits, and the expected probability
of success. Because each citizen’s marginal contribution to the success probability of
a large protest is negligible, it does not affect their decision.

5The only other paper in this literature that explicitly studies altruism is Shadmehr (2021), but
focusing on a static setting.

6See Lichbach (1995) for a broad survey of protester motivations.

4



Many other models focus on non-tangible rewards—often taking a black-box ap-
proach and assuming “warm-glow” payoffs from expressing discontent (Persson and
Tabellini, 2009; Little, Tucker and LaGatta, 2015; Egorov and Sonin, 2021). If these
payoffs are obtained only when the protest succeeds (“pleasure in agency”, e.g., in
Morris and Shadmehr 2023), they operate similarly to private benefits; if obtained
regardless of the outcome, even the overall probability of success becomes unimpor-
tant.

In either approach, there is no role for marginal success probabilities, and hence
public benefits, if the population is large. Since both private benefits and warm glow
payoffs are typically assumed to be independent, e.g., of expectations about the future
status quo, citizens behave myopically in equilibrium in existing models. (We revisit
the comparison with other approaches in Section 7.)

The closest papers to ours, Angeletos et al. (2007) and Little (2017), both study
repeated global games.7 In both models, a population of agents—driven by private
benefits—choose whether to attack a regime in each of many periods. (Little (2017)
extends Angeletos et al. (2007), allowing the game to continue after a coup with a new
regime.) In both models, the agents, though fully rational, behave myopically. Thus,
in the first period, agents play as in a static global game, regardless of continuation
values. Dynamics arise because—unlike in our setting—regime strength is assumed
to be fixed, so survival today creates common knowledge tomorrow that the regime
is strong enough to have survived, leading to equilibrium multiplicity. In particular,
there is an equilibrium where no attack occurs after the first period. However, if
new information arrives over time, repeated attacks are possible once the signal of
past survival has lost its relevance. In this family of models, the logic of collective
procrastination does not arise, and signals of future regime strength or payoffs cannot
affect equilibrium behavior.

A broader literature on regime change models mass protests as global games
(Carlsson and Van Damme, 1993), though usually assuming a single opportunity
to attack. Papers in this literature often focus on how different information struc-
tures shape coordination, and how different groups interact. Hollyer, Rosendorff and
Vreeland (2015) and Little (2012), for example, study how macroeconomic indicators

7In global games, first used by economists to study coordination games such as currency attacks
(Morris and Shin, 1998), players obtain noisy information (e.g., about the stability of a regime) and
then act simultaneously. The inability to coordinate behavior perfectly due to slight differences in
information typically yields equilibrium uniqueness in static models.
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and electoral results respectively can act as public signals that catalyze coordination.
Such signals are generated endogenously in Casper and Tyson (2014): failed mass
protests reveal anti-regime sentiment, inducing elites to attempt a coup. Boix and
Svolik (2013) examine the role of information generated by power-sharing agreements
in coordinating behavior by elites. In all of these papers, as here, actions are strategic
complements. In Tyson and Smith (2018), the regime has both opponents and adher-
ents; actions are strategic substitutes across groups. Another strand of the literature
considers interventions by the regime to change payoffs or manipulate information
(Angeletos, Hellwig and Pavan, 2006; Edmond, 2013).

Although not about regime change, Chassang and Padró i Miquel (2010) and
Chassang (2010) do incorporate forward-looking concerns in a dynamic coordination
game. Both papers study two-player8 dynamic cooperation games with exit: when
one player exits (e.g., attacks the other) the game ends and both players receive
terminal payoffs. Their model is related to a variant of ours, discussed in Appendix
B, in which the game ends when the protest fails rather than when it succeeds. The
assumption that the game ends when cooperation fails leads to different incentives
and results—in particular, cycles and procrastination do not arise.

Another strand of the literature on dynamic attacks assumes a single attack which
agents can join at different times, and studies intra-attack dynamics (Dasgupta, 2007;
Shadmehr and Bernhardt, 2019). In these models, extremists may protest first, but
all citizens are tempted to wait and join a protest later—to gain information about
the state from others’ actions and ensure they are not left as the lone protester. Thus,
both free-riding and bandwagoning or cascades (Kuran, 1991; Lohmann, 1994) are
possible. These effects do not appear in our model: since each period represents a
different protest, there is no such thing as joining a protest “later.”

In many ways, our assumption of altruistic citizens mirrors a literature that ad-
dresses the paradox of voting. Models of turnout with selfish voters are known to
predict unrealistically low turnout (Feddersen, 2004; Blais, 2000). High turnout in
large elections is better explained by models with a “civic duty” (Feddersen and San-
droni, 2006; Coate and Conlin, 2004) or altruistic motive, even if the weight placed on
others’ welfare is small (Edlin, Gelman and Kaplan, 2007; Jankowski, 2007; Fowler,
2006; and especially Myatt 2015). Similarly, private benefits rarely accrue to millions

8As discussed above and in the example below, forward-looking concerns can arise in dynamic
coordination games, even without altruism, if the population is finite.
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of protesters; a model of selfish protesters that accounts for this should predict very
low turnout among non-insiders. But protesting, like voting, is a form of civic ex-
pression, and arguably the closest substitute for voting available in a non-democratic
society, so it can plausibly be explained by similar motives as voting turnout. More-
over, the assumption of altruism (rather than a purely expressive “warm glow” pay-
off) preserves a role for (non-excludable) instrumental concerns, in the same way that
turnout in models of civic or altruistic voting is responsive to election closeness, but
purely expressive turnout is not.

3 Two-Player Example

To build intuition, we start with a simple two-player, two-period example before
presenting our model with many players and altruism. Because each citizen truly
can change the outcome when the population is small, pivotality concerns (and the
attendant dynamic incentives our paper studies) arise even without altruism.

Two citizens choose whether to protest in each of two periods. Protesting costs c
for each citizen. If both citizens protest in a given period, the regime falls; otherwise,
it survives. Regime change in period t gives both players a payoff θt ∼ N(µ, σ2

θ) and
ends the game. At the end of period 2, the game ends even if the regime survives.
Future payoffs are discounted by δ < 1.

Consider first the case of full information and no state uncertainty (σ2
θ = 0; regime

change payoff is µ). If µ < c, then full abstention is both socially optimal and the
only (subgame perfect) equilibrium. On the other hand, if µ > c, then having both
citizens protest in both periods is both socially optimal and an equilibrium of the
noncooperative game (though there are others, as is common in coordination games):
deviating to abstention in period 2 lowers the deviator’s payoff from µ− c to 0, and
abstaining in period 1 lowers the deviator’s payoff from µ − c to δ(µ − c). These
results do not change qualitatively if there is some state uncertainty (σ2

θ > 0 small)
but the state in each period is commonly observed by both players. Thus, with
full information, collective procrastination is suboptimal and also need not arise in
equilibrium.

Suppose now, however, that σ2
θ > 0, and observations of the state are slightly

noisy: at the beginning of each period, each citizen privately observes a signal xit =
θt + ϵit, where ϵit ∼ N(0, σ2

ϵ ); then they simultaneously choose whether to protest.
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We will focus on limits of equilibria as σ2
ϵ → 0.

Now, in period 2, a unique9 equilibrium is selected in which each player i protests
when xi2 is above a threshold x∗2 = 2c. The reason is that, when i sees a signal that
makes her indifferent (xi2 = x∗2), it is equally likely that the other citizen has seen a
higher signal (xj2 > x∗2, hence j protests) or a lower one (xj2 < x∗2, hence j abstains),
so i’s expected payoff from protesting is θ2

2
+ 0

2
− c (where θ2 ≈ xi2 = x∗2, since signals

are very precise), while her payoff from abstention is zero.
Now consider period 1. If µ < 2c and σ2

θ is small, then in most cases both players
will abstain in period 2 and, by the same argument, in period 1 as well. If µ > 2c, then
the protest equilibrium will be most likely selected in period 2. So i’s continuation
payoff if the regime survives period 1 is approximately δ(µ − c). At the threshold
signal value x∗1 that makes i indifferent in period 1, her payoff if she attacks is now
only approximately θ1

2
+ δ(µ−c)

2
− c ≈ x∗1

2
+ δ(µ−c)

2
− c, because there is about a 50%

chance that the other citizen receives a lower signal and stays home. Her payoff from
abstention is about δ(µ− c). Then, if i is indifferent,

x∗1
2

+
δ(µ− c)

2
− c ≈ δ(µ− c) =⇒ x∗1 ≈ δ(µ− c) + 2c,

which is higher than the second-period threshold, 2c.
To summarize, when µ < c, both citizens (efficiently) stay home. When c ≤ µ <

2c, both citizens (inefficiently) stay home, due to the inefficiency of risk-dominant
equilibria.10 When µ > 2−δ

1−δc, both citizens likely protest in both periods.11 But,
when 2c < µ < 2−δ

1−δc, the citizens pass in period 1 and attack in period 2.
As the social planner’s solution shows, waiting is inefficient: if it’s ever optimal to

protest, players should protest in both periods. But, when information is noisy, the
opportunity to protest in period 2 makes it even harder to coordinate on protesting in
period 1. In fact, when 2c < µ < 2−δ

1−δc, the citizens would be better off if protesting in
period 2 were impossible: they would still protest only once, but at least the protest

9There is also a no participation equilibrium, but it disappears if a lone protester can overthrow
the regime with any arbitrarily small yet positive probability.

10Intuitively, if µ is only slightly above c, protesting is optimal if both players do it, but being
the lone protester is costlier than forgoing a profitable protest, so protesting is unwise if there is
mutual uncertainty about what the other citizen will do. Notice that this static inefficiency arises
even when there is only one period.

11When µ > 2−δ
1−δ c, we have µ > δ(µ− c) + 2c, so that in most cases θ1 > δ(µ− c) + 2c, and hence

xi2 > δ(µ− c) + 2c ≈ x∗
1.
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µ

Payoffs

c 2c
2−δ
1−δc

0

Static inefficiency Collective procrastination

Social planner
Equilibrium, one-shot game
Equilibrium, two-period game

µ− c

δ(µ− c)

Figure 1: Ex ante payoffs in equilibrium, when there is either one or two opportunities
to protest, and socially optimal payoff, as a function of µ.

would not be delayed. This is visualized in Figure 1.

4 The Model

Now we extend the analysis to a set N of players who repeatedly choose whether to
attack or not. In our main specification, the set of players is a continuum: N = [0, 1].
To clarify some issues concerning the scaling of payoffs and pivotal probabilities as
the population grows, we briefly discuss the case of a finite population in Section 5.

Time is discrete and finite: t ∈ {0, 1, . . . , T}. The payoffs from a successful attack
in period t are governed by a parameter θt ∼ N(µt, σ

2
θ), drawn independently across

periods.
The information structure and timing of the game are as follows. At the beginning

of each period t, if the game has not yet ended, Nature draws the value of θt and then
reveals to each player i a signal

xit = θt + ϵit,

where ϵit ∼ N(0, σ2
ϵ ) is independent across players and periods.
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Each player i ∈ N then simultaneously chooses to attack (ait = 1) or abstain
(ait = 0). These actions result in the regime being overthrown with probability
f(lt), where lt denotes the fraction of the population who attack in period t. If
the regime falls, the players receive some terminal payoffs, described below, and
the game ends. With probability 1 − f(lt), the game continues in the next period.
(At the end of period T , the game ends even if the regime survives.) We assume
that f is smooth, increasing and convex. More formally, we assume that f is twice
continuously differentiable; 0 ≤ f(0) < f(1) ≤ 1; f ′(l) > 0 and f ′′(l) > 0 for all
l; and 0 < inf l∈(0,1) f

′′(l) ≤ supl∈(0,1) f
′′(1) < ∞. A simple example is given by any

quadratic function, f(lt) = b0+b1lt+b2l
2
t , with b0 ≥ 0, b1, b2 > 0, and b0+b1+b2 ≤ 1.

Payoffs

We allow the players’ preferences to reflect some degree of altruism, measured by a
parameter α ∈ [0, 1]. To make this explicit, we distinguish between each player i’s
hedonic flow payoff in period t, uit, and her flow utility in period t, vit, defined as

vit = uit + α
∑
j ̸=i

ujt. (1)

In other words, each player puts weight α on the well-being of each other player,
and weight 1 on her own. Thus α = 0 models completely self-interested players,
while α = 1 models fully altruistic players that consider the welfare of others just
as important as their own, as a social planner would. (Note that Equation (1) only
yields a well-defined utility function if the population is finite. However, the resultant
expression for the players’ marginal payoff from attacking—which is the key object of
interest—extends in a natural way to the case of an infinite population. See Section
5 for details.)

The players have a common discount factor δ ∈ (0, 1). We denote i’s discounted
hedonic payoffs from period t onwards by Uit, defined as

Uit =
∑
t≤τ≤T

δτ−tuiτ .

Hedonic payoffs are as follows. Each agent i who attacks in a period t bears a flow
cost of attacking c > 0 in that period. If the regime falls in period t, then all agents
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also receive a one-time payoff θt defined above, and the game ends. If the regime
survives in period t, all agents instead accrue a known status quo flow payoff νt, and
the game moves on to the next period.12 Note that all agents receive either θt or νt,
as appropriate, regardless of whether they attacked in that period.

Our solution concept is Perfect Bayesian Equilibrium.

Assumptions: Interpretation and Discussion

In many ways, our model takes after existing workhorse models of protests in the
global games literature. We depart from the standard assumptions when necessary
to obtain a model that clearly highlights the forces we are interested in. Some of
these departures are worth discussing.

First, we assume that the benefits from a successful revolt are public. Although
there is evidence that both private and public benefits matter in practice (Cantoni,
Yang, Yuchtman and Zhang, 2019; Muller and Opp, 1986), models in this literature
typically focus on private benefits (Angeletos et al., 2007; Edmond, 2013; Little,
2017)—an exception is Shadmehr (2021). In Section 6, we show that the general
logic of our results survives if we allow for both private and public benefits.

Second, we allow for some degree of altruism. This assumption is what keeps pub-
lic benefits relevant in the agents’ benefit-cost calculation as the population becomes
large and, hence, the probability of being pivotal goes to zero. Section 3 shows that
our results arise even without altruism if the population is small—in general, they
hold whenever there are multiple periods and the logic of pivotality is present.

Third, the payoff from revolution is affected by the state of the world, θt, but the
probability of a successful revolt, f(lt), is not directly affected by the state. A natural
interpretation is that θt parameterizes the expected outcome after a revolution—for
example, the ideology or competence of a de facto opposition leader—rather than
the regime’s ability to stave off protesters. This assumption is for simplicity; qualita-
tively similar results hold if there is uncertainty about the function f , or other payoff
parameters such as νt or c.

12As written, the model assumes that, after period T , there are no more protesting opportunities
and also no more status quo payoffs. We could, however, assume that status quo payoffs νT+1,
νT+2, . . . keep accruing forever if the regime survives through period T . Adding such “post-terminal”
payoffs to the model is equivalent to bundling them into the period-T status quo payoff, i.e., setting
ν̃T =

∑
t≥T δt−T νt.
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It is worth comparing our setup to the two most popular payoff specifications in
global games. In some models (Morris and Shin, 2003; Little, 2016), attackers receive
θ+l−1, while abstainers receive 0. Our model generates a similar specification for the
marginal payoff from attacking. But these papers have no concept of an attack being
“successful” or “unsuccessful” in a binary sense. In another variant (Morris and Shin,
1998; Dasgupta, 2007; Angeletos et al., 2007; Shadmehr, 2021; Little, 2017; Shadmehr
and Bernhardt, 2019; Edmond, 2013), attackers receive 1 − c if successful and −c if
unsuccessful, but only succeed if l ≥ 1 − θ. This specification is inconvenient for
our purposes because it only yields a supermodular game when pivotality concerns—
which are central to our analysis—are absent.

Fourth, we assume that regime change ends the game. This assumption is less
substantively restrictive than it might appear: the payoff θt represents the citizens’
expected continuation utility from a new regime starting in period t + 1. The new
regime could itself face protests. Such possibilities are all captured by the payoff θt.

Fifth, the probability of a successful revolt, f(lt), is strictly increasing and convex
in the size of the protest. The convexity assumption guarantees supermodularity
in the presence of pivotality concerns, by ensuring that the marginal impact of an
additional protester is higher the more protesters there are.13 This assumption best
models settings in which overthrowing the regime is “hard” and requires a large mass
of people to show up, whereas concavity of f might be natural if even a moderate
crowd is sufficient, and so there are diminishing returns when lt is large. The model is
not intractable if we assume that f is concave—leading to strategic substitutability,
as found by Cantoni et al. (2019)—though the equilibrium strategies would involve
some degree of mixing, and procrastination would no longer arise due to fears of
miscoordination.14

Finally, we assume that the state of the world θt is drawn independently across
periods. This contrasts with Angeletos et al. (2007) and Little (2017), in which
the state is fixed over time. However, our model allows the mean of the state in
each period to follow an arbitrary sequence (µt)t=0,1,...,T . In Section 6 we show that
persistent shocks can be accommodated, if any information about them is commonly
observed; the key assumption keeping our model tractable is that the idiosyncratic
uncertainty about θt—which supports unique equilibrium selection—is transient. (In

13In a model with no pivotality concerns it is enough to assume that f is increasing.
14Procrastination could still arise due to the free-riding effect discussed at the end of Section 5.
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our analysis, we focus on the case of σ2
ϵ small, so it is substantively unimportant

whether the idiosyncratic shocks are persistent or transient.)

5 Analysis

We solve the game by backward induction from the last period. Suppose the regime
has survived until the beginning of period T . What is left to play is a static coor-
dination game, which can be solved using familiar techniques from the global games
literature.

Let ∆iT be i’s marginal payoff from attacking, given a signal observation xiT and
the other players’ equilibrium strategies. In equilibrium, i must attack if ∆iT > 0

and abstain if ∆iT < 0.
To see how marginal payoffs should be calculated, it is instructive to consider

the case of a large but finite population.15 Suppose that N = {1, . . . , n}. Then the
marginal payoff from attacking is

− c+ E

[
(1 + α(n− 1)) (θT − νT )

(
f

(
l̃T +

1

n

)
− f(l̃T )

)
| xiT

]
,

where c is the cost of protesting, α is the altruism parameter, n is population size,
θT and νT are payoffs from regime change and status quo in period T respectively,
f(l) is the probability of regime change when fraction l of citizens attack, and l̃T ≡
1
n

∑
j ̸=i ajT is the fraction of the population who attacks, assuming i abstains. As

n→ ∞, both l̃t and l̃t +
1
n

converge to lt, while

(1 + α(n− 1))

(
f

(
l̃t +

1

n

)
− f(l̃t)

)
→ αf ′(lt).

Note that, if the agents are even slightly altruistic (i.e., for any α > 0), pivotality
is taken into account, and public benefits matter, even as the population grows. This
happens because the total gain from a successful revolt (approximately αn) increases
proportionally with population size, while an agent’s probability of being pivotal
(approximately f ′(lt)

n
) decreases proportionally; these two forces offset each other.

15It is preferable not to work directly with a finite population in the main model, because in that
case the distribution of signals would be random even conditional on the state, complicating the
analysis.
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With a continuous population, then, the net payoff of attacking is:

∆iT = −c+ E [α(θT − νT )f
′(lT ) | xiT ] . (2)

Our first result characterizes the agents’ equilibrium behavior in the last period.

Lemma 1. Assume σϵ > 0 is small enough. Then the period-T subgame has a
unique equilibrium. In this equilibrium, each player i attacks if and only if xiT is
weakly greater than a threshold x∗T (σϵ). Moreover, as σϵ → 0, x∗T (σϵ) converges to a
limit x∗T , which equals

x∗T =
c

α[f(1)− f(0)]
+ νT .

The equilibrium threshold yields intuitive comparative statics. Higher costs of
protesting c and better status quo payoffs νT both drive up the threshold x∗T , discour-
aging protesting; greater “agency”, f(1) − f(0), and altruism α encourage it. That
the unique equilibrium is in threshold strategies follows from familiar arguments for
global games. Here is an intuitive derivation of the equilibrium threshold x∗T . A
citizen i whose signal xiT equals x∗T must be indifferent, i.e., ∆iT (x

∗
T ) = 0. When

σϵ is small, xiT is a precise signal of the state, so i believes that θT is close to x∗T .
On the other hand, i’s signal says very little about where it ranks relative to other
citizens’ signals; as is standard in global games (Morris and Shin, 2003), i expects
that the fraction of citizens with higher signals than her own is approximately uni-
formly distributed between 0 and 1. Because it is precisely those citizens who will
attack, lt|xiT = x∗T is approximately uniform between 0 and 1. Substituting all this
into Equation (2),

∆iT (x
∗
T ) ≈ −c+ α(x∗T − νT )

∫ 1

0

f ′(l)dl = −c+ α(x∗T − νT )[f(1)− f(0)].

Setting this expression equal to zero yields the limit threshold from Lemma 1.16

Our next observation is that the full game can be solved using exactly the same
approach, with one difference. Denote by U t+1(σϵ, σθ) the expected value of any
agent’s hedonic continuation payoffs at the beginning of period t + 1, assuming the
regime has survived until then. Then i’s marginal utility from attacking in period t

16Note that the equilibrium strategy in the limit is the Laplacian action, that is, the best response
to a uniform prior over others’ actions (Morris and Shin, 2003).
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is
∆it = −c+ E

[
α
(
θt − νt − δU t+1(σϵ, σθ)

)
f ′(lt) | xit

]
,

because regime change attains the payoff θt but, in the process, forgoes both the
current status quo payoff νt and the continuation payoff δU t+1(σϵ, σθ), which captures
future payoffs from both protests and the status quo. Our next result traces out the
consequences of this observation.

Proposition 1. Assume σϵ is small enough. Then the game has a unique equilibrium.
In this equilibrium, each player i attacks in period t if and only if xit is weakly greater
than a threshold x∗t (σϵ, σθ). Moreover, as σϵ → 0, we have x∗t (σϵ, σθ) → x∗t (σθ) and
U t+1(σϵ, σθ) → U t+1(σθ). And as σθ → 0, we have x∗t (σθ) → x∗t , U t+1(σθ) → U t+1.
The sequence of limit thresholds and continuation utilities (x∗0, . . . , x

∗
T ;U0, . . . , UT ) is

found by recursively solving the following system of equations for t = T, T − 1, . . . , 0:

x∗t =
c

α[f(1)− f(0)]
+ νt + δU t+1; (3)

U t =

−c+ f(1)µt + (1− f(1))
(
νt + δU t+1

)
if µt > x∗t

f(0)µt + (1− f(0))
(
νt + δU t+1

)
if µt < x∗t ,

(4)

taking UT+1 = 0.

Per Equation (3) the equilibrium threshold in all periods is as in Lemma 1, but
augmented to account for the continuation value δU t+1 of preserving the status quo.
Note that, when σϵ and σθ are both low, xit is close to µt for most citizens. Then, in
periods where µt > x∗t , a mass protest takes place (lt ≈ 1) and the regime falls with
probability close to f(1). On the contrary, when µt < x∗t , almost nobody protests, and
the regime falls with probability close to f(0). This observation underpins Equation
(4). Equation (3) then reveals that mass protests occur precisely in periods where
µt−νt > c

α[f(1)−f(0)]+δU t+1: a high current gain from regime change, θt−νt ≈ µt−νt,
encourages protests, but so does a low continuation value δU t+1.

In fact, protests are always welfare-improving in equilibrium: whenever µt > x∗t ,
the net payoff of a mass protest, −c+ [f(1)− f(0)](µt− νt− δU t+1) (as per Equation
(4)) is at least −c+ c

α
, which is positive whenever altruism is imperfect (α < 1). Then

the expectation that citizens will coordinate on a protest in period t+ 1 discourages
protests in t by increasing δU t+1, while the expectation that citizens will coordinate
on abstention tomorrow spurs protests today. This leads to cycles of protest.
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To illustrate, consider the example shown in Figure 2, where f(l) = l+l2

4
, T = 5,

c = α = 0.1, δ = 0.8, and σϵ, σθ are both small, with σϵ << σθ. We assume µt = 3

and νt = 0 for all t, so regime change and status quo payoffs are constant. Then there
appears to be no reason to wait for a “better” moment (i.e., higher θt) to attack;
attacks ought to make sense in every period, or never. Yet, in equilibrium, the citizens
condition their actions today on expected future attacks, leading to cycling. Indeed, in
period 5, µ−ν = 3 > 2 = 0.1

0.1[0.5−0]
= c

α[f(1)−f(0)] , so there is a protest in period 5. But
as a result, the continuation value in period 4, δU5, equals 0.8(−0.1+0.5×3) = 1.12,
a value high enough that it tempts the citizens to abstain in period 4, as c

α[f(1)−f(0)] +

δU5 = 3.12 > 3. In period 3, citizens are more impatient because they would have
to wait two full periods for the next protest: δ2U5 = δU4 = 0.8 × 1.12 = 0.896, so

c
α[f(1)−f(0)] + δU4 = 2.896 < 3, and a protest occurs in period 3. By similar logic, the
citizens abstain in periods 1 and 2, and protest in period 0, having a 50% chance of
success (f(1) = 0.5) with each attack.17

This example also reveals that having additional opportunities to protest can be
harmful: for example, conditional on reaching period 4, the citizens’ equilibrium util-
ity is 1.12, but it would be 1.4 if protesting in period 5 were impossible, because
they would then coordinate on attacking in period 4. Thus, the availability of future
protest opportunities can induce collective procrastination. In general terms, changes
to the environment which slightly increase the agents’ payoffs given any strategy pro-
file—but discourage them from protesting—may leave them worse off in equilibrium.

Because the expectation of an imminent attack discourages attacking today, it
is generally true that, if the profitability of attacks is in an intermediate region,
attacks arrive in waves separated by periods of apparent calm, even if the underlying
fundamentals—the level of discontent, the state of the economy, and so on—remain
stable. The following proposition formalizes this argument.

Proposition 2. Suppose the status quo payoff νt equals ν for all periods t < T , with
νT = ν

1−δ .
18 Then there are thresholds µ0 ≤ µ∗ < µ∗ such that, for σϵ << σθ small

enough:

(i) If µt = µ > µ∗ for all t, then, in every period, almost everyone attacks.
17Note that, because σθ is small, citizens effectively know when they will next coordinate on a

protest. When σθ is substantial, a similar logic holds in fuzzier form.
18This amounts to assuming status quo payoffs of size ν for period T and all periods thereafter

(see Footnote 12), which keeps continuation values constant over time in case of no attacks.
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Figure 2: Pattern of attacks when the regime change payoff is intermediate: µt ≡ µ
between µ∗ and µ∗

(ii) If µt = µ < µ0 for all t, then, in every period, almost everyone abstains.

(iii) Generically,19 if there is η > 0 for which µt ∈ (µ∗ + η, µ∗ − η) for all t, there
are protest cycles: for T large enough, there are arbitrarily many periods in
which most players attack, and arbitrarily many periods in which most players
abstain.

Moreover

µ0 =
c

α[f(1)− f(0)]
+

ν

1− δ
,

µ∗ =
c

α[f(1)− f(0)]
+

δc

1− δ

f(0)

α[f(1)− f(0)]
+

ν

1− δ
,

µ∗ =
c

α[f(1)− f(0)]
+

δc

1− δ

[
f(1)

α[f(1)− f(0)]
− 1

]
+

ν

1− δ
.

An important implication of Proposition 2 is that, as δ → 1, µ∗ − ν
1−δ grows

without bound. This means that, if citizens are very patient, cycles of protest are
almost inevitable: protesting in every period becomes impossible unless the payoff to
protesting is extremely high (µt > µ∗).

Finally, Proposition 3 characterizes the model’s comparative statics in a limited
sense. It shows the effects of a marginal change in the parameters—in particular, µt′

19The statement is true except for a set of sequences (µt)t of Lebesgue measure zero.
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or νt′—on the incentive to attack in any period t ≤ t′, measured by changes in the
equilibrium thresholds x∗t .

Proposition 3. Consider the generic case in which µt ̸= x∗t for all t. Assume 0 <

f(0) < f(1) < 1. Then:

(i) A marginal increase in the current or future status quo payoff increases the
current threshold for attack: ∂x∗t

∂νt′
> 0 for all t′ ≥ t.

(ii) A marginal increase in the payoff of future regime change increases the current
threshold for attack, but a change in the payoff of current regime change does
not affect it: ∂x∗t

∂µt′
> 0 for all t′ > t but ∂x∗t

∂µt
= 0.

Explicit formulas for the derivatives ∂x∗t
νt′

, ∂x∗t
µt′

are given in the Appendix. The
intuition behind the result is as follows: when the status quo payoff, νt′ , or the regime
change payoff, µt′ , increases in some future period t′ > t, it becomes more attractive
to let the regime survive at time t, for a chance to receive this increased payoff at time
t′. Then the incentive to attack in period t decreases, and x∗t increases. Similarly, if
νt increases, the players are incentivized to let the regime survive today. On the other
hand, an increase in µt has no effect on x∗t—but makes players more likely to attack at
time t, since it increases θt, and thus the players’ signals xit. The general message is
that an attractive status quo always deters attacks, while an attractive regime change
payoff today encourages attacks now while discouraging attacks in previous periods.

When information is precise, Proposition 3 characterizes only latent changes in
the willingness to attack: for example, if µt < x∗t , then there will be no attack at time
t, a conclusion left unaffected by any marginal parameter change. If a parameter
changes enough, collective behavior eventually changes discontinuously, and perhaps
simultaneously in multiple periods. For instance, as νt′ increases, all the thresholds
x∗t for t < t′ smoothly increase, up to the point when one of them crosses µt from
below. At that point, the agents would suddenly switch from attacking in period t to
abstaining, and this expectation may in turn galvanize them to attack in a previous
period t

′′ , etc.
We finish our analysis with a discussion of the social planner’s solution, as well as

the equilibrium of the game, in the benchmark case of full information (σϵ = 0). This
comparison highlights that it is the fear of miscoordination under noisy information
that causes collective procrastination and cycles of protest.
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Remark 1. Assume σϵ = 0. In the social planner’s solution, all agents attack in period
t if θt is higher than a threshold

xsp
t =

c

[f(1)− f(0)]
+ νt + δU

sp
t+1, (5)

and all agents abstain if θt < xsp
t . Moreover,

(i) Citizens’ payoffs weakly increase if µt or νt increase for any t.

(ii) If regime change and status quo payoffs are constant (µt ≡ µ, σθ = 0, νt ≡ ν for
all t < T and νT = ν

1−δ ), and the regime never falls without a protest (f(0) = 0),
then either there is an attack in every period (if µ > c

[f(1)−f(0)] +
ν

1−δ ) or there
are no attacks (<).

(iii) If αf ′(1) ≥ f(1) − f(0), the social planner’s solution is also an equilibrium of
the game with perfect signals (σϵ = 0).

Per Equation (5), the social planner uses essentially the same threshold for action
that the agents would use in the equilibrium of our main model (cf. Equation (3))
if they were fully altruistic (α = 1). Part (i) of Remark 1 implies that, in the social
planner’s solution, there is no procrastination: a higher continuation payoff is always
weakly beneficial, as the social planner chooses to wait only when waiting is the best
option. Part (ii) reveals that there are no spurious cycles: if fundamentals are stable,
then the social planner has the agents always attack or never attack. Finally, part (iii)
reveals that, if altruism α is not too low and the incentive to coordinate is relatively
strong,20 then the social planner’s solution is also an equilibrium of the game when
the state θt is commonly known in each period; it is the addition of noise, as in our
main model, that makes this equilibrium unattainable.

It is worth noting that, in fact, the gap between the social planner’s solution and
the equilibrium with noise (compare Equations (3) and (5)) stems from two distinct
forces. Besides the fear of miscoordination that we have highlighted, there is also
a simple free-riding effect at work: if we expect to coordinate on protesting today,
but a citizen i deviates by abstaining, she may still see the regime fall thanks to the

20The expression f ′(1)
f(1)−f(0) = f ′(1)∫ 1

0
f ′(l)dl

measures coordination motives: if f is linear, then one’s

incentive to protest is independent of other citizens’ participation, and f ′(1)
f(1)−f(0) = 1; if f is steeply

convex, then f ′(1)
f(1)−f(0) ≫ 1.
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efforts of others—a relevant temptation if citizens are imperfectly altruistic.21 The
condition αf ′(1) ≥ f(1) − f(0) in part (iii) of Remark 1 ensures that agents are
altruistic enough, or it is imperative enough to participate in a burgeoning protest,
that free riding does not preclude the socially optimal outcome in the absence of
noise. When αf ′(1) < f(1)− f(0), even the best equilibrium under full information
may also feature procrastination and cycles, purely due to the free-riding effect.

6 Extensions

This Section presents two extensions. The first shows how the model may accommo-
date more general forms of uncertainty and informational shocks. The second shows
how the results change if private benefits (i.e., “club goods”) are present in addition
to public benefits. In Section B of the Online Appendix, we cover an alternative
setting where, unlike in our main model, there is no hope of overthrowing the regime,
but protests serve to keep a resistance alive and stave off permanent repression.

6.1 Generalized Uncertainty

We assumed for simplicity that the citizens face idiosyncratic uncertainty about their
payoff from regime change, θt. We could have obtained similar results by instead
assuming that they face idiosyncratic uncertainty regarding their status quo payoff,
νt. In particular, it would still be true that, as information becomes precise, most
citizens attack in period t if

µt >
c

α[f(1)− f(0)]
+ E[νt] + δU t+1,

and most abstain if the reverse strict inequality holds. Qualitatively similar results
are obtained if we instead assume uncertain and time-varying costs of protesting, c.

Perhaps more importantly, we can allow for very general uncertainty and learning
about future payoff parameters. For example, we can assume that, for each t, µt
and νt are distributed according to some cumulative distribution functions Ft, Gt,
with their realized values being fully revealed by the beginning of period t—but this
information can arrive as a lump sum at time t, or in a previous period, or gradually

21Note that, in our two-player example, the temptation to free-ride is completely absent, because
a protest backed by only one citizen cannot succeed.
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over many periods, with all such signals being revealed publicly to all citizens. Because
this uncertainty is resolved by time t, it makes no difference when characterizing the
citizens’ equilibrium strategies at time t. The only change to our analysis is that we
must write a more complicated version of Equation (4), as the expected continuation
value U t+1 must now take into account that the parameters µt+1 and νt+1, the players’
equilibrium actions, and the next period’s continuation value, U t+2, may take many
possible values.

Adding this kind of uncertainty to the model allows us to think about the equi-
librium response to information about future shocks. For example, let f(l) = 2l+l2

8
,

c = 1, δ = 0.8, and α = 4
33

. Assume that µt ≡ 1, but νt depends on the state of the
society, which may be green, yellow, or red. We can think of these as different stages
of democratic backsliding, where green corresponds to the status quo, yellow to the
introduction of bills that will entrench the incumbent in power, and red to after the
bill has been ratified. Alternatively, these colors can capture different levels of social
strife, where green is peaceful, yellow is tension, and red corresponds to conflict. Ei-
ther way, while the state is green or yellow, νt = 0, whereas νt = ν < 0 in the red
state. If the state is green at time t, then, at time t + 1, it will still be green with
probability 0.98; with probability 0.02, it will turn yellow. If the state turns yellow
in period t, it remains in this state for three periods (t, t+1, t+2) and then becomes
red forever. Note that the yellow state is not materially worse than the green one—it
just denotes that citizens are aware of an imminent slide to the red state.

Suppose that the state turns yellow in period t0. Using Equations (3) and (4),
we can show that citizens attack in every red period (i.e., from t0 + 3 onwards) if
ν < −10. Moreover, if ν < −20, citizens also attack in the last yellow period, t0 + 2;
if ν < −40, they also attack in period t0 + 1; and if ν < −80, they also attack in
period t0, that is, as soon as the state becomes yellow. Of course, citizens cannot
“preemptively” attack in period t0 − 1 because they do not know when the state
will turn yellow until they see it; and they will not attack in the green state so long
as ν > −1800. A crucial assumption underpinning this example is that f(1) < 1:
because even an all-out attack is not guaranteed to topple the regime, and the red
state is very costly, the citizens would do well to begin attacking ahead of time if
the red state is approaching. The more costly this state is, the earlier they begin to
attack. Only when ν is extremely negative (in particular, ν < −1800), the citizens
attack even in the green state, in an attempt to dodge a future red state that may
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not ever materialize. A general lesson from this example is that, in our model, the
citizens may respond proactively to a threat that the status quo will worsen in the
future, or that future opportunities to protest may disappear.

6.2 Private and Public Benefits

For simplicity, in our main model there are only public benefits from protesting:
any payoff from regime change benefits all citizens. We can instead allow for the
coexistence of public and private benefits that are only obtained by participants in a
successful attack. Suppose that a fraction ρ of regime change benefits are private: if
the regime falls at time t protesters receive θt and abstainers receive only (1 − ρ)θt.
(ρ ∈ [0, 1] is a commonly known parameter.) Then i’s marginal payoff from protesting
at time t becomes

∆it = −c+ E
[
α((1− ρ)θt + ltρθt − νt − δU t+1)f

′(lt) + ρθtf(lt) | xit
]
, (6)

where ρθtf(lt) is the expected private benefit received by i, and α(1 − ρ)θtf
′(lt)

and αltρθtf
′(lt) are, respectively, i’s valuation of others’ public and private benefits

generated by i’s own participation. Under the assumptions made in the main model,
the game remains one of strategic complements, so the citizens attack when xit is
above a threshold, converging to a limit x∗t when σ2

ϵ is small enough, specifically:

x∗t =
c+ α[f(1)− f(0)](νt + δU t+1)

(1− ρ)α[f(1)− f(0)] + ρ(αf(1) + (1− α)
∫ 1

0
f(l)dl)

. (7)

A derivation of Equation (7) can be found in the Appendix. Note that, when
ρ = 0, this simplifies to Equation (3).

This extension yields two insights. First, it shows that adding private benefits
does not fundamentally alter the strategic logic of the problem: so long as pivotality
concerns are active (due to either altruism or a small population), continuation values
matter in the citizens’ strategic calculus (i.e., δU t+1 appears in Equation (7)), and
similar arguments as in our main model show that protest cycles and procrastination
can result. This is true even if all material benefits are private (ρ = 1).

Second, it allows us to cleanly compare our model to canonical models of protest
(Morris and Shin, 2003; Angeletos et al., 2007; Little, 2017) in which there is a con-
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tinuum of citizens; private benefits are available; and there are no altruistic concerns.
We can obtain a model with these properties within our framework by setting ρ > 0

and α = 0. Equation (7) becomes

x∗t =
c

ρ
∫ 1

0
f(l)dl

. (8)

The continuation utility, U t+1, vanishes from the expression: non-atomic and selfish
agents will act as if myopic, even when they are forward-looking, because the value
of continuing the game matters in their strategic calculus only insofar as their par-
ticipation might affect the probability of regime change, which it cannot. Therefore,
information about the future becomes irrelevant in the selfish model of protests.22

Although selfish protesters are less motivated to act than a social planner would
like in a static setting, they may be inefficiently slow or quick to act in a dynamic set-
ting, precisely because they disregard the future in their calculations. In the context
of an improving environment (µt, νt increasing over time) selfish citizens might un-
necessarily “jump the gun,” chasing a short-term payoff. In contrast, they might fail
to react to an approaching catastrophe (µt, νt sharply decreasing) if current regime
change payoffs are not tempting enough.

Finally, our simple “selfish model” contains no mechanism leading to protest cy-
cles: the threshold in Equation (8) is constant over time, so if µt is constant, there
will be attacks in all periods (if µt > x∗t ) or none (<). Existing papers within this
framework (Angeletos et al., 2007; Little, 2017) show that intermittent attacks are
possible if the state is hidden and persistent (i.e., θ is drawn only once and remains
fixed). The resulting linkage across periods is that after a failed attack, citizens know
that the regime was (and remains) strong enough to have survived. This negative
signal discourages further attacks unless new information xit suggests that the regime
is in fact not too strong. In other words, the logic behind waves of protest is in-
formational and backward-looking, in contrast to the strategic, forward-looking logic
driving Proposition 2.

22Again, this is true when the population is large. Otherwise, even selfish agents care about being
pivotal, and engage in forward-looking behavior.
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7 Discussion

Our model generates empirical predictions that do not follow from existing models
of protests. For instance, public benefits can drive protest behavior, whether private
benefits are present or not. “News shocks” can be impactful: threatening bills can
cause protests, while a promise to hold elections can defuse them. And higher proso-
ciality (higher α) should increase participation, as well as make participation more
sensitive to the aforementioned forces (e.g., news shocks). Some of these predictions
have empirical support: Cantoni et al. (2019) find that more prosocial citizens in
Hong Kong were more likely to protest, and Muller and Opp (1986) find that protest
behavior responds more to “public goods incentives” than to selective incentives or
psychological rewards. These and other predictions warrant further testing.

As a preliminary exercise, it is worth examining the key events of some recent
protest movements through the lens of our model to see how its predictions can map
to reality. The aforementioned Hong Kong protests, sparked by the February 2019
introduction of a proposed extradition bill,23 are an example in which it is apparent
that protesters were motivated by forward-looking considerations. In June, when
the bill would have been discussed at the Legislative Council (Purbrick, 2019), the
protests peaked, leading to clashes with police. Further protests followed, now against
the bill, the police crackdowns, and the government’s condemnation of the protests
as riots. The bill was then suspended indefinitely.24 Crowds peaked at as many as
two million participants. Pro-democracy candidates, previously a minority, captured
over 80% of District Council seats at the November 2019 local elections. The conflict
echoed massive protests in 2003 against a proposed national security bill, as well as
the 2014 Umbrella Revolution, which condemned a proposal to implement democratic
elections but only between candidates selected by a pro-Beijing committee. These ex-
plosions of dissent punctuated a rising collective unease with the mainland’s attempts
to encroach on Hong Kong’s autonomy, described as “the political ground simulta-
neously shifting and shrinking beneath their feet,” all this against the backdrop of a
ticking clock, as the terms of the 1997 Sino-British Joint Declaration that delineates
the “one country, two systems” framework would formally expire in 2047.25 Finally,

23https://www.nytimes.com/2019/06/09/world/asia/hong-kong-extradition-protest.
html

24https://www.nytimes.com/2019/06/16/world/asia/hong-kong-protests.html
25https://time.com/5786776/hong-kong-joshua-wong-future-homeland/
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in June of 2020, the mainland National People’s Congress, bypassing the local gov-
ernment, imposed a national security law that criminalized dissent in Hong Kong.
The law had an immediate chilling effect on protests and led to the disbandment
of pro-democracy parties, raids on media offices, and mass arrests of activists and
opposition politicians.26

It is worth highlighting three facts. First, the 2003, 2014, and 2019 protests all
began in response to proposed bills or reforms, which had not yet had any material
consequences but could be taken as signs that the future and autonomy of Hong Kong
were quickly deteriorating. Thus, citizens demonstrated forward-looking protest par-
ticipation. Second, even though there was common knowledge that the “one country,
two systems” framework would expire in 2047, it took concrete threats that the system
would be subverted ahead of schedule, and imminently, to spur them to act. Citizens
thus showed signs of collective procrastination, as their strongest attempts at extract-
ing concessions through mobilization took place when the government had already
shifted towards a hard-line approach, with Xi Jinping having made bold moves to
centralize authority and minimize internal dissent in China throughout the 2010s.
Third, protests grew in response to police brutality, which arguably showed that the
worst was yet to come, and so the time to act was now.

Through the lens of our model, we can thus see the protests as an increasingly
desperate resistance which responded to future threats but only when the prospect of
disaster became imminent. In contrast, to explain the 2019 surge in protest behavior,
models of “selfish protesting” would need to allege an increase in private benefits
from success; a decrease in the cost of protesting; or a weakening of the regime which
made it a tempting target. While private benefits may drive the behavior of leaders
and activists, it cannot reasonably explain the participation of millions of people,
and the other explanations run counter to the facts (as the protesters faced a regime
that had dug in its heels and was willing to respond with violence). Another possible
rationalization is that, in a coordination game, any idiosyncratic event could trigger
collective action by shifting the players’ “focal point”—but this explanation would
chalk the consistent response to threatening legislation up to coincidence. In partic-
ular, in these models, continuation utilities have no role to play, even if individual
citizens are rational and forward-looking.

26https://www.nytimes.com/2021/01/05/world/asia/hong-kong-arrests-national-
security-law.html
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Finally, one may plausibly explain the observed protest behavior as an emotional
response to grievances (Passarelli and Tabellini, 2017; Gibilisco, 2021; Correa, Nan-
dong and Shadmehr, 2021), yet this explanation is incomplete without a model of
why and when certain events aggrieve people.27

The 2014 Euromaidan revolution in Ukraine is another recent example. After
years of negotiations with the European Union and promises of European integra-
tion, the Yanukovych administration announced in November of 2013 that it was
suspending plans to sign a broad political and economic association agreement with
the EU, only a week before the scheduled signing. Instead, Ukraine would seek closer
ties with Russia, which had threatened retaliatory trade sanctions in response to
the EU deal. Protesters gathered the same day, angry that their hopes to finally
escape the Russian sphere of influence—to no longer live in “a post-Soviet barrack
temporarily repainted in yellow and blue”—were quickly vanishing.28 Ukraine failed
to sign the EU agreement as scheduled, even as both sides claimed that a deal was
still on the table.29 The protests grew in number and scope of demands, and turned
into riots after the government responded with a violent crackdown.30 The situation
worsened further after the government passed a package of draconian anti-protest
laws in January,31 and reached its nadir in February, with over 100 protesters being
killed by police amid escalating clashes. Soon, widespread desertion among demor-
alized police forces forced Yanukovych to flee to Russia.32 Again, a pattern emerges
of citizens protesting in response to signals of a worsening future (or a dashed hope
of improvement), after years of inaction despite a bleak outlook, and strengthening
their resolve in the face of violence and draconian measures signaling a turn towards
dictatorship. These and other examples do not readily fit an image of self-interested
protesters opportunistically chasing the spoils of victory, or responding in knee-jerk

27A viable approach, which yields similar results to ours, would be to assume a form of “pleasure
in agency” that accounts for the collective gain in net present value from a successful protest; ∆it

would then equal E[f(lt)(θt − νt − δU t+1) | xit]. We thank Mehdi Shadmehr for this observation.
28https://www.nytimes.com/2013/11/27/world/europe/protests-continue-as-ukraine-

leader-defends-stance-on-europe.html
29https://www.reuters.com/article/us-ukraine-eu/eu-says-door-remains-open-to-

ukraine-as-unity-cracks-idUSBRE9BE05120131216
30https://www.nytimes.com/2013/12/02/world/europe/thousands-of-protesters-in-

ukraine-demand-leaders-resignation.html
31https://www.washingtonpost.com/world/in-ukraine-protesters-appear-to-be-

preparing-for-battle/2014/01/20/904cdc72-81bd-11e3-9dd4-e7278db80d86_story.html
32https://www.nytimes.com/2014/02/24/world/europe/as-his-fortunes-fell-in-

ukraine-a-president-clung-to-illusions.html?_r=1
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fashion to material deprivation.

8 Conclusions

In this paper we develop a dynamic model of protests in which citizens act as if they
are somewhat likely to be pivotal, and hence may act even if the benefits from regime
change accrue to all citizens, including non-participants. The strategic calculus we
uncover arises if the population is small, or irrespective of population size if citizens are
altruistic. We show that, in a dynamic context, the willingness to engage in “pivotal
protesting” responds not just to contemporaneous benefits and costs, but also to the
future ramifications of regime change or its absence. In particular, altruistic citizens
may protest in response to an event that increases the cost of protesting if it also paints
a bleak picture of the future, as is the case with police crackdowns or authoritarian
measures. Because an expectation of future collective action makes present collective
action less urgent, and vice versa, spikes in social turmoil are self-limiting and may
arrive in waves, even if the underlying material and social conditions are stable over
time. Moreover, because partially altruistic citizens act only when collective action
is socially beneficial by a wide enough margin, the mere existence of future chances
to act may tempt them to drag their feet today, leaving them worse off.

The dynamic encouragement and discouragement effects that are central to our
analysis are absent from models of repeated mass protests driven by private benefits.
Within our theory, they are the source of novel predictions which, in our view, trans-
late into more natural conceptualizations of many protest processes. (Though we
discussed two prominent examples, the emergence of protests in response to negative
expectations and state violence appears to be a general phenomenon.) In assuming
limited altruism, we aim to anchor the formal literature on social movements closer to
the substantive literature, capturing notions such as public-mindedness, grievances,
and other moral considerations that undeniably play a role in civic behavior.

The model is flexible and allows many extensions besides the ones covered in
the paper. One salient question concerns government manipulation: if indeed col-
lective action is vulnerable to a form of collective “limited willpower,” how would a
government shape payoffs or beliefs over time to defuse protests? For example, the
government may increase clientelistic transfers when the threat of revolt spikes, or
promise to hold new elections as an alternative to immediate resignation.
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A more challenging direction is to enrich the informational environment. For in-
stance, the government may have private information about its strength or willingness
to repress dissent, while citizens may have private information about their level of
discontent. Signaling concerns would then arise: citizens may mobilize to communi-
cate, rather than just to overthrow the government, and the government may repress
to show strength or resolve.

Another possible avenue for future work is to model other instances of civic be-
havior under our partial altruism framework. While altruism has been proposed as
an explanation for turnout, other activities that have received less attention, such as
campaigning for a candidate, are plausibly motivated by civic-mindedness and also
involve dynamic coordination between potential supporters.
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A Appendix

Proof of Lemma 1. The general strategy of the proof follows four steps:

(i) Show that the game is supermodular in actions, that is, if others’ strategies
increase in the sense of attacking at more signal realizations, then any player’s
incentive to attack also increases.

(ii) Show that the best response to a symmetric threshold strategy profile is a
threshold strategy. Using standard arguments from the supermodular games
literature, conclude that the game has extremal equilibria in symmetric thresh-
old strategies.

(iii) Show that the game has a unique equilibrium in symmetric threshold strategies,
hence a unique equilibrium.

(iv) Characterize the equilibrium threshold, in particular as σϵ → 0.

The proof follows standard approaches for global and, more generally, supermod-
ular games. There are two complications, however, that make the proof less than
standard. First, the game is not supermodular in the traditional sense; we show
instead that a closely related game (with the same set of equilibria) is supermodu-
lar.33 Second, for the purpose of proving Proposition 1, we need a stronger result
than stated in this Lemma: not only do we need to show the existence of a threshold
σϵ > 0 such that if σϵ < σϵ then the equilibrium is unique (and in threshold strate-
gies), but we also need σϵ to be uniformly bounded away from zero as parameters
vary (in particular as νT varies), because the game in periods t < T has an a priori
uncertain continuation value νt + δU t+1 that is itself a function of σϵ.

(i) Supermodularity. Formally, denote j’s strategy in period T by AjT , the set
of realizations of xjT for which j attacks. We will impose as an additional technical
condition that a strategy AT = (AjT )j∈[0,1] can only be compatible with equilibrium
if AT is Lebesgue measurable as a subset of R × [0, 1]. (Otherwise, objects such as
the fraction of attackers in equilibrium may not be well defined.)

33Lemma 2.3 in Morris and Shin (2003) deals with a similar failure of supermodularity to the one
discussed below, but their result assumes a uniform prior and does not rule out equilibria that are
not in threshold strategies.
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Let (AjT )j∈[0,1], (ÃjT )j∈[0,1] be two strategy profiles such that AjT ⊆ ÃjT for all
j. The standard approach would be to show that ∆iT (xiT ) ≤ ∆̃iT (xiT ) for all i, xiT ,
where ∆it(xiT ) is as defined in Equation (2) and ∆̃iT (xiT ) is the analogous object
when other players instead use the strategy ÃT . However, this inequality does not
necessarily hold. Intuitively, if AT and ÃT differ only in that agents attack more under
ÃT when their signal realizations are very low, then an agent who expects others to
play according to ÃT may be less willing to attack, because she is afraid that f ′(lT )—
hence the effect of her participation—will be higher precisely when θT−νT is negative,
a case in which she would prefer not to topple the regime.

We then need a more careful argument. Our strategy is to argue that (a) agents
never want to attack when their signals are relatively low, no matter what they
expect others to do, and (b) when restricting attention to strategies that respect this
constraint, supermodularity does hold.

Remark 2. (DeGroot, 1970, Theorem 9.5.1) θT |xiT ∼ N
(
σ2
ϵµT+σ2

θxiT
σ2
θ+σ

2
ϵ

,
σ2
θσ

2
ϵ

σ2
θ+σ

2
ϵ

)
.

Remark 3. Let X ∼ N(µ, σ2). Then E(X|X > a) ≤ max
(
a+

√
2
π
σ, µ+

√
2
π
σ
)

.

Proof. Follows immediately from the inverse Mills ratio formula (see Greene (2003),
p. 759).

Lemma 2. There is σ2
ϵ > 0 such that, if σ2

ϵ < σ2
ϵ , then no agent with a signal below

c
2αf ′(1)

+νT ever attacks. Moreover, we can take σ2
ϵ1 = min

((
c

4αf ′(1)

)2
, σ2

θ
c

4αf ′(1)|µT−νT |

)
.

Proof. Note that, for any xiT ≤ c
2αf ′(1)

+ νT ,

∆iT (xiT ) = −c+ α

∫ ∞

−∞
(θT − νT )f

′(lT (θT ))g(θT |xiT )dθT ≤

≤ −c+ α

∫ ∞

νT

(θT − νT )f
′(lT (θT ))g(θT |xiT )dθT ≤

≤ −c+ αf ′(1)

∫ ∞

νT

(θT − νT )g(θT |xiT )dθT ≤

≤ −c+ αf ′(1)(E(θT |xiT , θT ≥ νT )− νT ) ≤

≤ −c+ αf ′(1)

[
max

(
σ2
ϵµT + σ2

θxiT
σ2
θ + σ2

ϵ

, νT

)
+

√
2

π

σθσϵ√
σ2
θ + σ2

ϵ

− νT

]
≤

≤ −c+ αf ′(1)

[
max

(
σ2
ϵ (µT − νT ) + σ2

θ
c

2αf ′(1)

σ2
θ + σ2

ϵ

, 0

)
+ σϵ

]
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where g(θT |xiT ) is the posterior density of the state given i’s signal xiT .
There are two cases. If σ2

ϵ (µT−νT )+σ2
θ

c
2αf ′(1)

≤ 0, then the above expression equals
−c+αf ′(1)σϵ, which is negative whenever σϵ < c

αf ′(1)
. If σ2

ϵ (µT − νT )+ σ2
θ

c
2αf ′(1)

> 0,
then the expression equals

− c+ αf ′(1)

[
σ2
ϵ (µT − νT ) + σ2

θ
c

2αf ′(1)

σ2
θ + σ2

ϵ

+ σϵ

]
≤

≤− c+ αf ′(1)

[
σ2
ϵ

σ2
θ

(µT − νT ) +
c

2αf ′(1)
+ σϵ

]
= − c

2
+ αf ′(1)

[
σ2
ϵ

σ2
θ

(µT − νT ) + σϵ

]

which is at most − c
4
+ αf ′(1)σ

2
ϵ

σ2
θ
(µT − νT ) if σϵ ≤ c

4αf ′(1)
. This expression is negative

whenever σ2
ϵ < σ2

θ
c

4αf ′(1)|µT−νT | .

Now assume σ2
ϵ < σ2

ϵ1 and consider a modified game in which, when an agent i
receives a signal xiT < c

2αf ′(1)
+ νT , she is forced mechanically to abstain, while for

xiT ≥ c
2αf ′(1)

+ νT she is allowed to choose an action as usual. This game clearly has
the same set of equilibria as the original. Next, we argue that it is supermodular for
σ2
ϵ small enough.

Lemma 3. Assume that σ2
ϵ < σ2

ϵ2 = min

(
σ2
ϵ1, σ

2
θ

c
4αf ′(1)

1
|µT−νT− c

4αf ′(1) |
,
(

c
4αf ′(1)

)2
1

ln(f ′′)−ln(f ′′)

)
,

where f ′′ = supl∈(0,1) f
′′(l), f ′′ = inf l∈(0,1) f

′′(l). Then, in the restricted game where
actions are chosen only when xiT ≥ c

2αf ′(1)
+ νT , ∆iT (xiT ) is weakly increasing in AT .

Proof. Consider two strategy profiles AT , ÃT ⊆ [ c
2αf ′(1)

+ νT ,∞) × [0, 1], such that
AjT ⊆ ÃjT for all j. For any i and any xiT ≥ c

2αf ′(1)
+ νT , we will compare ∆iT (xiT )

to ∆̃iT (xiT ). To simplify notation, we will drop the T indices. We then have

∆̃i(xi)−∆i(xi) =α

∫ ∞

−∞
(θ − ν)[f ′(l̃(θ))− f ′(l(θ))]g(θ|xi)dθ

=α

∫ ν

−∞
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+α
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ν
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It is enough to show that this last expression is at least zero. Next, we note that, for
all θ,

l̃(θ)− l(θ) =

∫ ∞

−∞
λ(x)

1

σϵ
ϕ

(
x− θ

σϵ

)
dx,

where λ(x) is the additional fraction of players who attack when seeing a signal x
under Ã relative to A (i.e., λ(x) = |Ã(x)| − |A(x)|) and ϕ is the standard normal
density function. Then it is enough to show that, for any x ≥ c

2αf ′(1)
+ ν,
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Next, we argue that the “tightest” case is when x and xi are as low as possible—that
is, if we show the result for x = xi =

c
2αf ′(1)

+ ν then it will automatically follow for
all other x, xi. The reason is that, if Equation (9) holds, then
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for any function γ(θ) that is positive and weakly increasing. Moreover, by standard

properties of the normal distribution, ϕ
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are both MLRP-increasing in x and xi, respectively (i.e., g(θ|x′i)

g(θ|xi) is increasing in θ for

x′i > xi, and
ϕ
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σϵ

)
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is increasing in θ for x′ > x).

Lemma 4. If σ2
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Then it is enough to take σ2
ϵ ≤ σ2

θ
c

4αf ′(1)
1

ν+ c
4αf ′(1)−µ

if ν+ c
4αf ′(1)

−µ > 0 and any value
of σ2

ϵ works otherwise.

Now, using our previous results and Lemma 4, it is enough to show that
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 dθ ≥ 0,

where x0 = ν + c
4αf ′(1)

. In turn, it is enough to show that, for each r ≥ 0, the value
of the first integrand at θ = ν − r is dominated by the value of the second integral at
θ = ν + c

4αf ′(1)
+ r, i.e., it is enough to show
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for all r ≥ 0. Rearranging, and since r + c
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≥ r, it is enough to show that

e
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Since the left-hand side is decreasing in r, it is enough to show

e
− 1
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(
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f ′′
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which holds whenever σ2
ϵ ≤

(
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)2
1

ln(f ′′)−ln(f ′′)
.

It follows that, when σϵ < σϵ2, both Lemma 2 and Lemma 3 apply, and the
game (with restricted strategy space) is supermodular in actions, which implies the
existence of a greatest equilibrium and a smallest equilibrium between which all other
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equilibria are bounded (Milgrom and Roberts, 1990). Lemma 2 already implies the
existence of a lower dominance region. We can similarly show the existence of an
upper dominance region:

Lemma 5. Assume that σ2
ϵ < σ2

ϵ3 = min

(
σ2
ϵ2, σ

2
θ

c
αf ′(0)

1
|νT+ c

αf ′(0)−µT |

)
. Then any

agent with a signal xiT > 2 c
αf ′(0)

+ νT always attacks.

Proof. By Lemma 3, when σ2
ϵ < σ2

ϵ2, an agent i’s incentive to attack is lowest if other
agents never attack. In that case

∆iT (xiT ) =− c+ αf ′(0) (E(θT |xiT − νT )) ≥

≥− c+ αf ′(0)

σ2
ϵµT + σ2

θ

(
2c

αf ′(0)
+ νT

)
σ2
θ + σ2

ϵ

− νT

 =

=− c+
σ2
ϵ

σ2
θ + σ2

ϵ

αf ′(0)(µT − νT ) + 2c
σ2
θ

σ2
θ + σ2

ϵ

.

This is positive whenever σ2
ϵαf

′(0)(µT − νT ) + 2cσ2
θ > c(σ2

θ + σ2
ϵ ), or equivalently

σ2
ϵ (c− αf ′(0)(µT − νT )) < σ2

θc or σ2
ϵ

(
c

αf ′(0)
− µT + νT

)
< σ2

θ
c

αf ′(0)
.

(ii) Best response to symmetric threshold strategy is threshold strategy.
Because the extremal equilibria can be obtained by infinitely iterating the agents’
best-response functions (starting with a strategy profile in which everyone always
attacks, or no one ever does, both of which are symmetric and in threshold strategies),
they will necessarily be symmetric threshold strategy profiles if we can show that the
best response to a symmetric threshold strategy profile is another symmetric threshold
strategy profile. In other words, we want to show that if all agents j ̸= i attack iff
xjT ≥ x∗, then i’s incentive to attack is strictly increasing in xiT .

More formally, let ∆iT (x, x
′, σ) be the marginal payoff from attacking for agent i

when she observes xiT = x; all other agents j attack iff xjT ≥ x′; and σϵ = σ. Then
we want to show the following:

Lemma 6. ∆iT (x, x
′, σ) is strictly increasing in x for all x, x′ ≥ c

2αf ′(1)
+ νT and

σ2 ∈ (0, σ2
ϵ3).
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Proof. Recall that

∆iT (x, x
′, σ) = −c+ α

∫ ∞

−∞
(θ − νT )f

′ (lT (θ)) g(θ|x)dθ.

Note that (θ−νT )f ′ (lT (θ)) is negative for θ < νT , and positive and strictly increasing
in θ for θ > νT (because both θ − νT and lT (θ) = Φ

(
θ−x′
σϵ

)
are strictly increasing in

θ, and f ′ is strictly increasing). It follows that ∆iT (x, x
′, σ) is increasing in x if (a)

g(θ|x) is FOSD-increasing in x as a function of θ, and (b) for each θ0 < νT , g(θ0|x) is
decreasing in x for all x ≥ c

2αf ′(1)
+νT . (a) follows from Remark 2. (b) follows from the

facts that ϕ(z) is increasing in z for z < 0, and g(θ0|x) =
√
σ2
θ+σ

2
ϵ

σθσϵ
ϕ

 θ0−
σ2
ϵ µT+σ2

θx

σ2
θ
+σ2

ϵ
σθσϵ√
σ2
θ
+σ2

ϵ

,

where σ2
ϵµT+σ2

θx

σ2
θ+σ

2
ϵ

≥ νT + c
4αf ′(1)

≥ νT > θ0 by Lemma 4.

Moreover, Lemmas 2 and 5 imply that any such x must be bounded between
c

2αf ′(1)
+ νT and 2c

αf ′(0)
+ νT .

(iii) Unique equilibrium in threshold strategies. Finally, we show that there is a
unique symmetric threshold strategy equilibrium, which implies that the greatest and
smallest equilibria coincide, and hence that there are no other equilibria (Milgrom and
Roberts, 1990). Formally, what we will show is that, for σϵ small enough, ∆iT (x, x, σϵ)

is continuous and strictly increasing in x, so there must be a unique x∗(σϵ) for which
∆iT (x, x, σϵ) = 0, as required.

Dropping the index iT to economize on notation, we can write

∆(x, x, σϵ) = −c+ α

∫ ∞

−∞
(θ − ν)f ′

(
Φ

(
θ − x

σϵ

)) √
σ2
θ + σ2

ϵ

σθσϵ
ϕ

θ − σ2
ϵµ+σ

2
θx

σ2
θ+σ

2
ϵ

σθσϵ√
σ2
θ+σ

2
ϵ

 dθ.

Applying the change of variable z = Φ
(
θ−x
σϵ

)
, so dz = ϕ

(
θ−x
σϵ

)
1
σϵ
dθ, and denoting
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ψ = Φ−1, so θ−x
σϵ

= ψ(z) and θ = x+ σϵψ(z), we can rewrite the integral as:

∆(x, x, σϵ) = −c+ α

∫ 1

0

(x− ν + σϵψ(z))f
′ (z)

√
σ2
θ + σ2

ϵ

σθ

ϕ

 θ−σ2
ϵ µ+σ2

θx

σ2
θ
+σ2

ϵ
σθσϵ√
σ2
θ
+σ2

ϵ


ϕ(ψ(z))

dz

∆(x, x, σϵ) = −c+ α

∫ 1

0

(x− ν + σϵψ(z))f
′ (z)

√
σ2
θ + σ2

ϵ

σθ

ϕ

(
(x−µ)σϵ

σθ
√
σ2
θ+σ

2
ϵ

+ ψ(z)

√
σ2
ϵ+σ

2
θ

σθ

)
ϕ(ψ(z))

dz.

Now note that the expression (x−ν+σϵψ(z))

√
σ2
θ+σ

2
ϵ

σθ

ϕ

(
(x−µ)σϵ

σθ

√
σ2
θ
+σ2

ϵ

+ψ(z)

√
σ2
ϵ+σ2

θ
σθ

)
ϕ(ψ(z))

defines
a function h of its arguments x, z, µ, ν, σϵ, σθ that is well defined and C∞ over
all x, µ, ν ∈ R, z ∈ (0, 1), σθ > 0 and, importantly, all σϵ ∈ R, including zero (and
negative values). Moreover, we can show that the integrand h(·)f ′(z) is uniformly
bounded by an integrable function for all σϵ below a threshold. Indeed, f ′ is bounded.
Using that Φ(y) ≤ ey for y < 0, we obtain z ≤ eψ(z), or ψ(z) ≥ ln(z) =⇒ |ψ(z)| ≤
| ln(z)| for z < 0.5. Using that Φ(y) ≤ ϕ(y)

|y| for y < 0, we obtain z|ψ(z)| ≤ ϕ(ψ(z)) =
1√
2π
e

−1
2
ψ(z)2 for z < 0.5, so

ϕ

(
(x−µ)σϵ

σθ
√
σ2
θ+σ

2
ϵ

+ ψ(z)

√
σ2
ϵ+σ

2
θ

σθ

)
ϕ(ψ(z))

= e
− 1

2

( (x−µ)σϵ

σθ

√
σ2
θ
+σ2

ϵ

+ψ(z)

√
σ2
ϵ+σ2

θ
σθ

)2

−ψ(z)2


≤ e
1
2

[(
(x−µ)

σ2
θ

)2

σ2
ϵ+2

(x−µ)

σ2
θ

|ψ(z)|σϵ+σθ
σθ

σϵ+ψ(z)2
(

σ2
ϵ

σ2
θ

+2 σϵ
σθ

)]

≤ eAσ
2
ϵ+|ψ(z)|(Bσ2

ϵ+Cσϵ)+ψ(z)
2(Dσ2

ϵ+σϵ)

for some A, B, C, D, E > 0 independent of z and σ2
ϵ . For z low enough that

|ψ(z)| > 1, this expression is bounded above by

eψ(z)
2((A+B+D)σ2

ϵ+(C+E)σϵ ≤
(

1√
2πz|ψ(z)|

)2[(A+B+D)σ2
ϵ+(C+E)σϵ]

≤
(
1

z

)2[(A+B+D)σ2
ϵ+(C+E)σϵ]

.

Hence the left end of the integral is of the form | ln(z)|
zβ

, and is well behaved for any
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σϵ such that the exponent β is less than 1, e.g., σϵ < 1
2(A+B+C+D+E)

. An analogous
bound can be given for z close to 1. It follows by the dominated convergence theorem
that ∆ is a continuous function of its arguments, in particular at σϵ = 0, where

∆(x, x, 0) = −c+ α

∫ 1

0

(x− ν)f ′(z)dz = −c+ α(f(1)− f(0))(x− ν).

But we need to go a step further. To prove that ∆ is strictly increasing in x for σϵ
small, we will show that ∂∆

∂x
(x, x, σϵ) converges uniformly to ∂∆

∂x
(x, x, 0) ≡ α(f(1) −

f(0)) > 0 as σϵ → 0.
We can use a similar argument. Denoting (x−µ)σϵ

σθ
√
σ2
θ+σ

2
ϵ

+ψ(z)

√
σ2
ϵ+σ

2
θ

σθ
= w, and using

that ϕ′(x) = −xϕ(x), note that

∂f ′(z)h(·)
∂x

= f ′ (z)

√
σ2
θ + σ2

ϵ

σθ

ϕ (w)

ϕ(ψ(z))
+ (x− ν + σϵψ(z))f

′ (z)
σϵ
σ2
θ

ϕ (w)

ϕ(ψ(z))
w.

Using the same bounds as before, the first term is bounded by an expression of the
form 1

zβ
for z close to zero, while the second is bounded by an expression of the form

ln(z)2

zβ
for z close to zero, where β < 1 if σϵ is small. Hence this expression is bounded

(uniformly for x, µ, ν, σθ, and σϵ in any closed intervals, with σθ strictly positive)
by an integrable function. The Leibniz integral rule then implies that ∂∆

∂x
(x, x, σϵ) ≡

α
∫ 1

0
∂f ′(z)h(·)

∂x
dz. Moreover, for any convergent sequence Yk = (xk, µk, νk, σθk, σϵk)

with limit Y∞, we have that ∂∆
∂x

(Yk) −−−→
k→∞

∂∆
∂x

(Y∞) by the dominated convergence
theorem, since the integrand f ′(z)h(·) is obviously continuous in the argument Y and
so converges pointwise. But then ∂∆

∂x
(Y ) is a continuous function of Y . Within any

compact set, then, it must be uniformly continuous by the Heine-Cantor theorem.
In particular, we can take a rectangle where σϵ ∈ [0, 1] and the other variables lie
in any closed interval (with minσ2

θ > 0). Then, by the uniform continuity, there is
σϵ such that, if σϵ ∈ (0, σϵ) and the other variables lie in their respective intervals,
∂∆
∂x

(x, µ, ν, σθ, σϵ)− ∂∆
∂x

(x, µ, ν, σθ, 0) <
α
2
(f(1)− f(0)), whence ∂∆

∂x
(x, µ, ν, σθ, σϵ) > 0.

In particular, taking the range of x to contain
[
ν + c

2αf ′(1)
, ν + 2c

αf ′(0)

]
, this argument

guarantees that there is σϵ such that, for all σϵ ∈ (0, σϵ), ∂∆
∂x

is strictly increasing at
every x between the dominance regions, which yields the uniqueness.

(iv) Equilibrium threshold as σϵ → 0. Our previous argument implies that,
as σϵ → 0, x∗(σϵ) → c

α[f(1)−f(0)] + ν; indeed, if not, there would be η0 > 0 and a

41



sequence σk → 0 such that either x∗(σk) ≥ c
α[f(1)−f(0)] + ν + η0 for all k or x∗(σk) ≤

c
α[f(1)−f(0)] + ν − η0 for all k. But our formula for ∆(x, x, 0) and the continuity of ∆
would imply that, for k high enough, ∆(x, x, σk) > 0 at any x ≥ c

α[f(1)−f(0)] + ν + η0,
and ∆(x, x, σk) < 0 at any x ≤ c

α[f(1)−f(0)] + ν − η0, a contradiction.

Proof of Proposition 1. The marginal payoff from attacking in period t is given by
the expression

∆it = −c+ E
[
α(θt − νt − δU t+1)f

′(lt)|xit
]
.

By the same argument as in Lemma 1, for σϵ small enough, this game has a unique
equilibrium, which is symmetric and in threshold strategies. In fact, this game is
equivalent to the game from period T , if we denote νt + δU t+1 ≡ νT . Note that
the proof of Lemma 1 yields the uniqueness result in this Proposition only because
we showed that a threshold σϵ can be found below which uniqueness is guaranteed,
regardless of the value that other parameters (in particular, ν) take, as long as they
lie in a compact interval. Indeed, in general the equilibrium in periods t + 1 and
onwards depends on the value of σϵ; hence the continuation value δU t+1 is a function
of σϵ. Thus, for periods t < T , we need to show that there is a threshold σϵ such that,
for all σϵ < σϵ, the game with (endogenous) status quo payoff ν = νt + δU t+1(σϵ)

has a unique equilibrium. Our proof from Lemma 1 guarantees that we can find a
threshold σϵ that works whenever ν lies, for instance, in [νt + δu, νt + δu], where u, u
are the infimum and supremum of the game’s possible continuation payoffs across all
feasible strategy profiles. This interval is guaranteed to contain νt + δU t+1(σϵ).

Because of the continuity of ∆ (in particular with respect to both σϵ and ν), our
proof of Lemma 1 also implies that, as σϵ → 0, x∗t (σϵ, σθ) → x∗t (σθ), where

x∗t (σθ) =
c

α[f(1)− f(0)]
+ νt + δU t+1(σθ),

where U t+1(σθ) = limσϵ→0 U t+1(σϵ, σθ). The convergence of U t+1(σϵ, σθ) and x∗t (σϵ, σθ)
can be shown by backward induction from T , using that if x∗t+1 converges, then U t+1

converges, and so x∗t does as well.
As for Equation (4), for general values of σϵ and σθ, let Ut(x, σϵ, σθ) be the expected

continuation hedonic utility in equilibrium of an agent i starting at time t, conditional
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on seeing xit = x, and U t(σϵ, σθ) be i’s expected continuation hedonic utility before
seeing xit (both of which, by symmetry, are the same for all agents). Then we have

Ut(x, σϵ, σθ) = −c1{x≥x∗t (σϵ,σθ)} + E
[(
θt − νt − δU t+1(σϵ, σθ)

)
f(lt(θt))|x

]
+ νt + δU t+1(σϵ, σθ)

U t(σϵ, σθ) = −cΦ

(
µt − x∗t (σϵ, σθ)√

σ2
ϵ + σ2

θ

)
+

E
[(
θt − νt − δU t+1(σϵ, σθ)

)
f(lt(θt))

]
+ νt + δU t+1(σϵ, σθ)

U t(σϵ, σθ) = −cΦ

(
µt − x∗t (σϵ, σθ)√

σ2
ϵ + σ2

θ

)
+

E

[(
θt − νt − δU t+1(σϵ, σθ)

)
f

(
Φ

(
θt − x∗t (σϵ, σθ)

σϵ

))]
+ νt + δU t+1(σϵ, σθ).

As σϵ → 0, U t(σϵ, σθ) converges to

U t(σθ) = −cΦ
(
µt − x∗t (σθ)

σθ

)
+ E

[(
θt − νt − δU t+1(σθ)

)
f
(
1{θt>x∗t (σθ)}

)]
+ νt + δU t+1(σθ).

As σθ → 0, U t(σθ) converges to

U t = −c1{µt>x∗t } +
(
µt − νt − δU t+1

)
f
(
1{µt>x∗t }

)
+ νt + δU t+1,

and x∗t (σθ) converges to

x∗t =
c

α[f(1)− f(0)]
+ νt + δU t+1,

as we wanted.

Proof of Proposition 2. For part (i), assume that µt = µ for all t, with µ < µ0. Then,
using Equation (3), we can calculate

x∗T =
c

α[f(1)− f(0)]
+

ν

1− δ
.

Since µ < µ0, as σθ goes to zero, for σϵ(σθ) small enough, we are in the limit equi-
librium characterized in Proposition 1 in the case µt < x∗t , in which θt < x∗t with
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probability going to one, and lt converges in probability to zero. Hence

UT = f(0)µ+ (1− f(0))
ν

1− δ
.

We can then calculate

x∗T−1 =
c

α[f(1)− f(0)]
+ ν + δf(0)µ+ δ(1− f(0))

ν

1− δ
.

There are now two cases. If µ ∈
(

ν
1−δ , µ0

)
, then automatically x∗T−1 > x∗T > µ, so

that almost no one attacks in period T − 1 either. By backward induction, we obtain
that

U t = f(0)
1− δT−t+1(1− f(0))T−t+1

1− δ(1− f(0))
µ+

[
1− f(0)

1− δT−t+1(1− f(0))T−t+1

1− δ(1− f(0))

]
ν

1− δ

x∗t−1 =
c

α[f(1)− f(0)]
+ ν + δU t,

whence U t > U t+1 and x∗t > x∗t+1 > . . . > µ for all t, and almost no one ever attacks
in equilibrium. On the other hand, if µ ≤ ν

1−δ , then U t and x∗t−1 obey the same
equations, but now x∗t > µ instead follows from the fact that x∗t > ν + δU t+1 which
is a convex combination of µ and ν

1−δ , hence higher than µ.
For part (ii), suppose that µt = µ > µ∗ for all t. Then, from Equation (4), we

know that, if x∗t < µ for all t ≥ t0, then for all t between t0 and T − 1,

U t = −c+ f(1)µ+ (1− f(1))(ν + δU t+1),

with UT = −c+ f(1)µ+ (1− f(1)) ν
1−δ . Equivalently, for t ≥ t0,

U t =
1− δT−t+1(1− f(1))T−t+1

1− δ(1− f(1))
(−c+ f(1)µ) +

[
1− f(1)

1− δT−t+1(1− f(1))T−t+1

1− δ(1− f(1))

]
ν

1− δ
.

This is a convex combination of µ − c
f(1)

and ν
1−δ , with the weight on the first term

decreasing in t. Since

µ∗ ≥ c

f(1)
+

ν

1− δ
,

with equality iff α = 1 and f(0) = 0, and µ > µ∗, we know that µ − c
f(1)

> ν
1−δ ,
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so U t0 > . . . > UT > ν
1−δ and x∗t0−1 > . . . > x∗T . For most players to attack in

equilibrium at time t0 − 1, we need x∗t0−1 < µ.
Iterating, to prove the result we need to show that x∗t < µ for all t with the

thresholds calculated as above, i.e., under the assumption that all agents will attack
in future periods. Because the sequence is decreasing in t, it is enough to show that
µ > limt→−∞ x∗t , i.e.,

µ >
c

α[f(1)− f(0)]
+ν + δ

−c+ f(1)µ

1− δ(1− f(1))
+ δ

(1− δ)(1− f(1))

1− δ + δf(1)

ν

1− δ

⇐⇒ 1− δ

1− δ + δf(1)
µ >

c

α[f(1)− f(0)]
− δc

1− δ + δf(1)
+

ν

1− δ + δf(1)

⇐⇒ µ >
c

α[f(1)− f(0)]

(
1 +

δf(1)

1− δ

)
− δc

1− δ
+

ν

1− δ
= µ∗.

Finally, for part (iii), it is convenient to relabel time periods as follows: set T =

0 and assume the game is played beginning at any integer t < 0. Let (x∗t )t∈Z≤0

be the sequence of equilibrium attack thresholds for this game, as characterized in
Proposition 1, for σθ → 0 with σϵ small enough. We will show that, generically,
there are infinitely many values of t for which x∗t > µt and infinitely many for which
x∗t < µt. (We will discard the non-generic case in which µt = x∗t for any t. Note that,
given values of µt+1, . . . , µ0, and the other parameters satisfying this constraint, the
value of U t+1 is uniquely pinned down, and hence so is x∗t , by Equation (3), so there
is a single real value of µt that is being ruled out.)

Suppose the former statement is not true, so that x∗t ≤ µt for all t ≤ t0 for some
t0. By our genericity assumption, we must then have x∗t < µt for all t ≤ t0, and

U t = −c+ f(1)µt + (1− f(1))(ν + δU t+1) (10)

for all t ≤ t0. Let µ = lim inft→−∞ µt. Let (ts)s∈N be a subsequence such that
µ = lims→∞ µts . Then, taking the limit of the inequality x∗ts < µts as s → ∞, we
must have x∗ ≤ µ for any x∗ that the x∗ts accumulate to. In particular, lim inf x∗t ≤ µ,
or equivalently

c

α[f(1)− f(0)]
+ ν + δ lim inf U t ≤ µ.

Equation (10) implies that U t, and U t′ for all t′ < t, are increasing functions of
µt. Hence lim inf U t is bounded below by a hypothetical Ũ calculated under the
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assumptions that everyone always attacks and that µt = µ for all t, i.e.,

lim inf U t ≥ Ũ =
−c+ f(1)µ

1− δ + δf(1)
+

(1− f(1))ν

1− δ + δf(1)
,

calculating Ũ as in part (ii).
Then it must be that

c

α[f(1)− f(0)]
+ ν + δ

−c+ f(1)µ

1− δ + δf(1)
+ δ

(1− f(1))ν

1− δ + δf(1)
≤ µ

⇐⇒ µ∗ ≤ µ.

Indeed, by construction, µ∗ is the threshold value of µ which would make this in-
equality hold with equality. But, since µt ≤ µ∗ − η for all t, µ ≤ µ∗ − η < µ∗, a
contradiction.

The proof for the latter part of the claim is similar. Suppose that x∗t ≥ µt for all t
below some t0. By our genericity assumption, we must have x∗t > µt for all t ≤ t0, so

U t = f(0)µt + (1− f(0))(ν + δU t+1) (11)

for all t ≤ t0. Letting µ = lim supt→−∞ µt, we must have lim sup x∗t ≥ µ, or equiva-
lently

c

α[f(1)− f(0)]
+ ν + δ lim supU t ≥ µ.

In turn U t is bounded above by a hypothetical Û calculated under the assumption
that no one attacks in the future and µt = µ for all t, i.e.,

lim supU t ≤ Û =
f(0)µ

1− δ + δf(0)
+

(1− f(0))ν

1− δ + δf(0)
.

Then we must have

c

α[f(1)− f(0)]
+ ν + δ

f(0)µ

1− δ + δf(0)
+ δ

(1− f(0))ν

1− δ + δf(0)
≥ µ

⇐⇒ µ∗ ≥ µ.

But by assumption µ ≥ µ∗ + η > µ∗, a contradiction.
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Proof of Proposition 3. By Equation (4), ∂x∗t
∂νt

= 1. For t′ > t, assuming a marginal
change that does not change the equilibrium actions, x∗t only depends on νt′ through
U t+1, which only depends on νt′ through U t+2, . . . , which only depends on νt′ through
U t′ . So

∂x∗t
∂νt′

= δ
∂U t+1

∂νt′
= δ

t′−t−1∏
s=1

∂U t+s

∂U t+s+1

∂U t′

∂νt′
= δt

′−t
t′−t∏
s=1

(
1− f(1µt+s>x∗t+s

)
)
≥ 0,

with equality only if f(1) = 1 and µt+s > x∗t+s for some s between 1 and t′ − t. As
for changes in µt, by Equation (4), ∂x∗t

∂µt
= 0. However, ∂Ut

∂µt
= f(1µt+s>x∗t+s

). Hence,
for t′ > t,

∂x∗t
∂µt′

= δ
t′−t−1∏
s=1

∂U t+s

∂U t+s+1

∂U t′

∂µt′
= δt

′−t
t′−t−1∏
s=1

(
1− f(1µt+s>x∗t+s

)
)
f(1µt′>x∗t′ ) ≥ 0,

with equality only if f(1) = 1 and µt+s > x∗t+s for some s between 1 and t′ − t− 1, or
f(0) = 0 and µt′ < x∗t′ .

Proof of Remark 1. The social planner aims to maximize the sum (or integral) of the
citizens’ (expected) ex ante utilities,

∫ 1

0

∑∞
t=0 δtuitdi. The threshold in Equation (5)

then follows from the following calculation: in period t, given that the planner would
have the citizens play optimally from period t + 1 onwards (thus generating payoff
U

sp
t+1), she can generate an aggregate payoff of

f(0)θt + (1− f(0))(νt + δU
sp
t+1)

by having nobody protest in period t, or an aggregate payoff of

−c+ f(1)θt + (1− f(1))(νt + δU
sp
t+1)

by having everybody protest. The latter expression dominates the former precisely
when θt ≥ xsp

t . Having a fraction of protesters protest is strictly worse than at least
one of these two options, because f is strictly convex.

(i) follows from the fact that the planner’s payoff from any fixed strategy profile
weakly increases as µt or νt increases; since the planner has full control over the
players’ strategies, her optimal payoff must increase by at least as much as if strategies
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are held fixed (if anything, re-optimizing given the new parameters might yield further
gains).

For (ii), note that, if µt ≡ µ; νt ≡ ν for t < T , νT = ν
1−δ ; f(0) = 0; and σθ = 0,

then, if µ < c
[f(1)−f(0)] +

ν
1−δ , then there is no protest in period T by Equation (5).

Then, since f(0) = 0, UT = ν
1−δ , so xsp

T−1 =
c

[f(1)−f(0)] + ν + δ ν
1−δ = xsp

T . By backward
induction, xsp

t is constant in t, and lower than µ for all t.
On the other hand, if µ > c

[f(1)−f(0)] +
ν

1−δ =
c

f(1)
+ ν

1−δ , then everybody protests in
period T , again by Equation (5). Then UT = −c+ f(1)µ+ (1− f(1)) ν

1−δ . Plugging
this into Equation (5), we obtain

xsp
t−1 =

c

f(1)
+ ν + δ

(
−c+ f(1)µ+ (1− f(1))

ν

1− δ

)
=

[
c

f(1)
+

ν

1− δ

]
(1− δf(1)) + δf(1)µ,

which is less than µ whenever µ > c
f(1)

+ ν
1−δ . By backward induction, we obtain that

U t is as calculated in part (ii) of Proposition 1, and is then a convex combination of
µ − c

f(1)
and ν

1−δ , so that xsp
t is between c

f(1)
+ ν

1−δ and c
f(1)

+ ν + δ
(
µ− c

f(1)

)
, and

hence less than µ, for all t.
For (iii), note that, whenever the social planner would have nobody attacking, the

marginal incentive to attack for a citizen i (if others are presumed to follow the social
planner’s strategy profile) is

∆it = −c+ αf ′(0)(θt − νt − δU
sp
t+1),

which is always less than ∆sp
t = −c+[f(1)−f(0)](θt−νt− δU

sp
t+1) because α ≤ 1 and

f is strictly convex (so f ′(0) < f(1)− f(0)). Since the social planner has the citizens
attack whenever ∆sp

t > 0, it must be that ∆sp
t ≤ 0, which implies ∆it < 0.34

On the other hand, when the social planner has everybody attack, the marginal
incentive to attack for a citizen i (if, again, others follow the social planner’s profile)
is

∆it = −c+ αf ′(1)(θt − νt − δU
sp
t+1),

which is at least as high as ∆sp
t (hence at least zero) if αf ′(1) ≥ f(1)− f(0).

34Note that, if θt − νt − δU
sp
t+1 < 0, the ordering between ∆it and ∆sp

t may flip, but in this case
both the social planner and the citizen agree that there should be no attack anyway.
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Derivation of Equation (7). By analogous arguments to those used in the proof of
Proposition 1, x∗t (σϵ, σθ) is the unique value of x that solves the equation

0 =∆it = −c+ E
[
α((1− ρ)θt + ltρθt − νt − δU t+1)f

′(lt) + ρθtf(lt)|xit = x
]

=− c+ α(1− ρ)E(θtf
′(lt)|x)− α(νt + δU t+1)E(f

′(lt)|x)+

+ αρE(ltθtf
′(lt)|x) + ρE(f(lt)θt|x)

−−−→
σϵ→0

− c+ α(1− ρ)x[f(1)− f(0)]− α(νt + δU t+1)[f(1)− f(0)]+

+ αρE(θtltf
′(lt)|x) + ρE(θtf(lt)|x)

As shown in Proposition 1, as σϵ → 0, θt|x converges to x, while lt|x is asymp-
totically uniformly distributed between 0 and 1. Then E(θtltf

′(lt)|x) converges to
x
∫ 1

0
lf ′(l)dl = x(f(1) −

∫ 1

0
f(l)dl), and E(θf(lt)|x) converges to x

∫ 1

0
f(l)dl. Substi-

tuting these identities into the above and rearranging yields Equation (7).
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B A Model of Fighting to Survive

This extension demonstrates the flexibility of our framework by considering a variant
of the model with the following properties. Suppose now that, while the movement
survives, the agents receive flow payoffs θt in every period. If the movement is crushed
in period t, there are no more opportunities to demonstrate in the future, and agents
receive a lump sum νt once and the game ends. (Of course, νt can represent a
discounted sum of payoffs.) Demonstrating still costs c and we make the same as-
sumptions as before regarding altruism. The probability that the movement survives
period t is f(lt).

Then the net payoff of demonstrating for the marginal agent is

−c+ E
[
α(θt + δU t+1 − νt)|xit = x∗t (σϵ)

]
,

where U t+1 is the continuation payoff from arriving at t+ 1 with the movement still
active. Hence, the limit equilibrium cutoff as σϵ → 0 is now

x∗t =
c

α[f(1)− f(0)]
+ νt − δU t+1. (12)

As in the main model, agents are reluctant to protest relative to the social plan-
ner’s solution (because they do not fully internalize the benefits), which means that
a marginal change in the future parameters which shifts the equilibrium from not
attacking to attacking in a future period will discontinuously increase the players’
payoffs. But, in this variant of the model, such an increase in continuation utilities
will actually encourage more protests today, since the citizens are more likely to
accrue that higher continuation utility precisely if they do protest today. (Mechan-
ically, this appears in Equation (12) as a negative sign in front of the term δU t+1:
an increasing continuation utility from survival lowers the threshold x∗t for protest-
ing today.) More generally, expectations of future agitation reinforce, rather than
discourage, incentives to fight today.

The logic leading to intermittent protests in the main model is then reversed, lead-
ing instead to bang-bang solutions. For example, then, if we assume νt ≡ 0, instead
of there being a range [µ∗, µ

∗] of protest payoffs leading to intermittent protests, there
is a single threshold µ∗ = c

α[f(1)−f(0)] such that, if µt < µ∗ for all t, almost nobody
protests in each period, while if µt > µ∗ for all t, most citizens protest in each period.
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Chassang (2010) studies a closely related model, with two players who must both
cooperate for the relationship (analogously, the protest) to survive, and a stationary
environment (which does not allow free variation over time of µt or νt) but with an
infinite horizon. In the infinite-horizon case, the dynamic complementarity discussed
in the previous two paragraphs is still present, but we can no longer backward induct
from a last period to find a unique equilibrium. Within his model, Chassang provides
an elegant characterization of (potentially multiple) infinite-horizon equilibria that
are Markovian in a certain sense.
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