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Abstract

We study policy experimentation in organizations with endogenous membership.
An organization decides when to stop a policy experiment based on its results. As
information arrives, agents update their beliefs, and enter or leave the organization
based on their expected flow payoffs. Unsuccessful experiments make all agents more
pessimistic, but also drive out conservative members. We identify sufficient conditions
under which the latter effect dominates, leading to excessive experimentation. In fact,
the organization may experiment forever in the face of mounting negative evidence. Ex
post heterogeneous payoffs exacerbate the problem, as optimists can join forces with
guaranteed winners. Control by shareholders who own all future payoffs, however, can
have a corrective effect. Our results contrast with models of collective experimentation
with fixed membership, in which under-experimentation is the typical outcome.
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1 Introduction

Organizations frequently face opportunities to experiment with promising but untested

policies. According to conventional wisdom, experimentation should respond to information:

agents should become more pessimistic after an adverse outcome, and they should abandon
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an experiment if enough negative information accumulates. In addition, when experimenta-

tion is collective, the temptation to free-ride and fears that information will be misused by

other agents lower incentives to experiment (Keller, Rady and Cripps 2005; Strulovici 2010).

Thus, if anything, organizations should experiment too little.

Yet history is littered with examples of organizations that have stubbornly persisted with

unsuccessful policies to the bitter end. The Communist experiments of the 20th century are

a dramatic example: many Communist societies maintained rigid command economies in the

face of prolonged economic decline, in some cases all the way up until their governments were

violently overthrown. Meanwhile, some like-minded European parties—notably the French

Communist Party—held fast in their support for the Soviet Union even as it collapsed, and

they themselves faded into irrelevance. Of course, these collective projects had detractors.

But rather than fight to change the course, many of them left.

The same sort of collective rigidity is displayed by firms that relentlessly pursue a revolu-

tionary vision or new technology all the way to either ultimate success or bankruptcy. This

phenomenon is common at Silicon Valley companies and other start-ups, such as Theranos

and Moderna, many of whose employees are almost religiously devoted to the company’s

mission (Chen 2022). These “true believers” become especially overrepresented during hard

times, because they are the least likely to quit.

Motivated by these and similar examples, we propose an explanation for obstinate behav-

ior by organizations. In our baseline model, an organization chooses in each period between

a safe policy, which yields a known flow payoff, and a risky policy of uncertain quality, which

yields lump sums arriving at random times if it is good, and nothing if it is bad. There is

a continuum of agents. They hold heterogeneous prior beliefs about the type of the risky

policy, but are otherwise identical. In every period, each agent decides whether to partic-

ipate in the organization, and obtain the flow payoff generated by its policy, or receive a

known outside option. All agents who participate in the organization today are granted

voting rights over tomorrow’s policy. More precisely, we assume that the median voter—the

member with the median prior belief—chooses tomorrow’s policy. Whenever the risky policy

is used, the results are publicly observed.

Our assumptions reflect three premises of our theory: agents can influence an organiza-

tion’s policy if they are members; they can enter and leave in response to information; and

some are more optimistic than others. The key observation is that, under these conditions,

new information affects both the beliefs of all agents and the set of agents who desire mem-

bership. These effects offset each other: for instance, bad news make all agents pessimistic,

but also disproportionately induce those with low priors to exit—and stop expressing dissent.

As a result, the distribution of beliefs in an organization can display a dampened or even
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contrary response to information. Our paper thus formalizes Hirschman (1970)’s argument

that members of a declining organization may react by leaving (“exit”) or pushing for policy

changes (“voice”), and that these two forces can substitute for one another.

Our first main result provides conditions under which this logic leads to excessive experi-

mentation from the point of view of all agents. We show that over-experimentation can take

a particularly stark form, in which the organization never stops experimenting in the face

of failure. Perpetual experimentation is more likely when agents are patient, the distribu-

tion of priors contains enough optimists, and the outside option is attractive, so that exit is

tempting. In fact, perpetual experimentation always obtains when the outside option offers

a close enough payoff to that of the organization’s safe policy.

Relative to a benchmark with a fixed decision-maker, two forces affect the pivotal agent’s

decision to experiment. On the one hand, the identity of the pivotal agent gradually shifts to

an ex ante more optimistic member as bad news accumulate. On the other hand, the current

pivotal agent is reluctant to continue experimenting precisely because she has limited control

over future policy choices. The first force pushes the organization to over-experiment, while

the second makes each agent more cautious. Excessive experimentation results when the

first force dominates. When perpetual experimentation does not obtain, this interplay of

forces can lead to too much or too little experimentation from the point of view of the initial

pivotal agent.

We also show that the emergence of perpetual experimentation is robust to several varia-

tions in assumptions, including general voting rules, size-dependent flow payoffs or learning

rates, barriers to reentry, and different learning processes, such as bad news or imperfectly

informative good news. Moreover, when news are imperfectly informative, it is possible for

an organization to abandon the risky policy only after a successful streak. Paradoxically,

the organization may thus experiment more precisely when the risky policy is bad; failure

may lead to radicalization, while success may render the organization more conservative and

prone to abandoning the very engine of its success.

Our main results also extend to an alternative model in which the risky policy is good

for some agents and bad for others ex post, and winners and losers are revealed through

experimentation (as in Strulovici 2010). In fact, the problem of over-experimentation be-

comes more severe in this case, as ex ante optimists can make common cause with revealed

winners. Finally, perpetual experimentation is also possible if the intensity of membership

is adjustable, and the agents are risk-averse. In that case, there is additional selection at the

intensive margin: optimists are all in, and gain outsize influence even relative to other mem-

bers. However, we show that perpetual experimentation is impossible if the organization is a

publicly traded firm, controlled by (risk-averse) investors whose stakes represent ownership
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of the firm’s present and future payoffs. Although there is again selection at the intensive

margin, in the long run, a shrinking population of optimists will struggle to hold all of the

company’s volatile stock, leading to falling share prices and an eventual takeover by pes-

simists. Capital markets can hence have a corrective effect on the tendency of organizations

towards obstinate behavior.

The rest of the paper proceeds as follows. The rest of this section reviews the related

literature and several applications of the model. Section 2 introduces the baseline model,

and Section 3 analyzes its equilibria. Section 4 presents two extensions: one allowing for ex

post winners and losers, and another that models a publicly traded firm. Section 5 concludes

the paper. All proofs are in Appendix A. Additional extensions are presented in Appendix

B.

1.1 Related Literature

This paper is related to the literature on strategic experimentation with multiple agents

(Keller et al. 2005, Keller and Rady 2010, 2015, Strulovici 2010), as well as the literature on

dynamic decision-making in clubs (Acemoglu et al. 2008, 2012, 2015, Roberts 2015, Bai and

Lagunoff 2011, Gieczewski 2021).

In Keller, Rady and Cripps (2005) and Keller and Rady (2010), multiple agents with

common priors control two-armed bandits of the same type which may have breakthroughs

at different times. In this setting, there is under-experimentation due to free-riding, but

encouragement effects can also arise. This is especially true if the agents have asymmetric

information (Dong 2021). These effects are not present in our model, as we assume a single

collective decision in each period about whether to experiment, and there is no asymmetric

information.1

In Strulovici (2010), a group of agents decides by voting whether to collectively experi-

ment with a risky technology. Agents have common priors, but experimentation gradually

reveals each to be a winner or loser from the risky technology. In equilibrium, there is too

little experimentation because agents fear being trapped into using the new technology as

losers if there are enough winners in favor, and vice versa.

There is a similar motive to under-experiment in our model: because pessimists exit

after bad news, a pivotal agent may halt experimentation early to avoid a takeover by

over-experimenting optimists. However, when each pivotal agent is optimistic enough to

take that risk, the selection effect dominates, and the same exit option instead causes over-

1While there is free-riding insofar as outsiders benefit from the option value of experimentation, it is
not socially costly because the learning rate is independent of the organization’s size. However, perpetual
experimentation can result even when the learning rate is endogenous, as shown in Appendix B.
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experimentation. The two models also differ in that, in Strulovici’s model, learning exac-

erbates the conflict between agents, while in our model learning helps agents converge to a

common belief. However, our main results survive in a “heterogeneous outcomes” version of

our model that is directly comparable to Strulovici (2010) (see Section 4.1).

The literature on decision-making in clubs studies dynamic policy choices that determine

current flow payoffs as well as control over future decisions. Most papers on this topic assume

discrete policy spaces (Acemoglu et al. 2008, 2012, 2015, Roberts 2015), as we do. In contrast,

Bai and Lagunoff (2011) and Gieczewski (2021) study the case of a continuous policy space,

which yields very different results—namely, the policy converges along a smooth transition

path to a myopically stable state. This literature has focused on models with fixed, known

environments,2 with tensions arising due to conflicting preferences. In contrast, our agents

differ only in their beliefs. And, more importantly, they live in an uncertain environment

that they can learn about depending on their choices. In particular, our result that the

long-run equilibrium policy may be desired by almost nobody—as in the case of perpetual

experimentation—is driven by learning and is novel to the literature. Finally, our paper

shares with Gieczewski (2021) an interest in organizations that allow agents to join or leave.

This is mainly a superficial connection, as the model in Gieczewski (2021) can be relabeled to

fit the more standard case of policy choices that directly shape the set of decision-makers (e.g.,

immigration policy). Our paper is also the first in this literature to consider membership of

variable intensity.

1.2 Applications

In this Section, we discuss how our assumptions map to different applications such as

political parties, political reforms, firms and cooperatives, and give examples of each.

Political Parties

Our model captures the internal dynamics of political parties choosing between a “safe”

mainstream platform—for example, social democracy—and a more extreme alternative—for

example, a communist platform preaching the imminent collapse of capitalism. The selection

of extremists into extremist parties, which intensifies when such parties are unsuccessful,

explains their rigidity in the face of setbacks.

The decline of the French Communist Party (FCP) fits this pattern. In the 1980s, many

high-profile FCP members became disillusioned with the party’s platform as they absorbed

2An exception is Acemoglu et al. (2015), which only proves some general results in a framework with
exogenous shocks that does not nest our model.
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a stream of negative signals—namely, the unraveling of the Communist experiment in the

Eastern Bloc. Ross (1992: 54), for example, writes of the dissenters in the party that “by

autumn 1989, in the face of eastern European disasters, rebel ranks grew larger and larger”.

Yet many more detractors left the party, as the FCP was “no longer capable of appealing

to the broader community of French intellectuals” (Hazareesingh 1991: 3). For example,

Pierre Juquin, a prominent member who became a leader of the moderate faction, was

“ousted from the Politbureau Central Committee in 1987, and expelled from the party after

declaring his independent presidential candidacy” (Bell and Criddle 1989: 524).

As a result, the party failed to adapt and remained loyal to the Soviet Union, to the

point that it came “to be equated with the televised image of bureau politique member

Pierre Blotin enthusiastically attending the Romanian Communist Party congress days before

the deservedly ignominious end of the Ceaucescus” (Ross 1992: 54). The FCP’s electoral

support thus declined from a base of roughly 20% in the postwar period to less than 3% in

the late 2010s (Bell 2003, Damiani and De Luca 2016), with a precipitous drop in the 1980s.

Indeed, “by 1990 what little attention was paid to it portrayed it as a crank, marginalized

organization” (Ross 1992: 44). Even decades later, it retained the main tenets of its platform,

such as the claim that capitalism is on the verge of collapse.3

Reforms

Our model also speaks to the dynamics of political reforms. In this application, agents

are residents of a country or city that is trying a reform with uncertain results. The residents

can stay and try to influence policy, or they can leave. Our baseline model is appropriate

if the reform is equally good or bad for all. The “heterogeneous outcomes” variant of our

model in Section 4.1 covers reforms that create unexpected winners and losers (c.f. Strulovici

(2010), who suggests trade liberalization or a switch to a centralized economy as examples

of ex post-unequal reforms).

The Communist experiments of the 20th century illustrate the relationship between emi-

gration and political pressure. Some Communist countries—most notably, the Soviet Union

and East Germany—imposed very strict barriers to emigration, while others, such as China

and Cuba, had milder restrictions (Dowty 1988). In accord with our model, the Communist

regimes of the Soviet Union and East Germany collapsed, but not those of China or Cuba.4

Even the regimes that failed, however, took a long time to do so. One possible reason is that,

as we show in Section 4.1, support for experimentation is even more robust when outcomes

3See, for example, the FCP’s 2013 manifesto: http://congres.pcf.fr/35745.
4Notably, many Cuban emigrants were dissidents, as reflected in the high numbers of Republican-leaning

Cuban Americans (Bishin and Klofstad 2012).
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are heterogeneous, as ex ante optimists can join forces with revealed winners.

In a similar vein, Sellars (2019) argues that emigration served to preserve the political

status quo in Mexico and Japan in the 1920s, as many detractors (e.g., supporters of agrarian

reform in Mexico) were young men in search of economic opportunity that they could also

find abroad. Finally, examples abound of the “Curley effect” (Glaeser and Shleifer 2005),

whereby politicians shape their electorate to maintain power. For instance, the eponymous

mayor Curley of Boston induced the rich to emigrate with redistributive policies favoring

his base of poor Irish constituents; mayor Coleman Young of Detroit drove white residents

and businesses out of the city; and Robert Mugabe of Zimbabwe harassed white farmers and

seized their property, precipitating their emigration (Meredith 2002).

Firms

Finally, our model can explain the behavior of rigidly ambitious firms. An extreme exam-

ple is Theranos, a Silicon Valley start-up founded by Elizabeth Holmes in 2003. Theranos

sought to produce a portable machine capable of running hundreds of medical tests on a

single drop of blood, a vision as revolutionary as it was difficult to realize. Over the course

of ten years, the firm spent over a hundred million dollars in pursuit of this vision, while

doing little to develop incremental innovations as a fall-back plan. It eventually launched in

2013 with inaccurate and fraudulent tests, and never recovered from the ensuing scandal.

Over the ten years leading up to Theranos’s turn to fraud, a pattern repeated itself. The

company would bring in high-profile hires and create enthusiasm with its promises, but once

inside the organization, employees and board members would gradually become disillusioned

by the lack of progress.5 As a result, many left the company,6 even as those who saw Holmes

as a visionary remained. Though the board came close to removing Holmes as CEO early

on (Carreyrou 2018: 50), she retained control for many years after, because too many who

had lost faith in her leadership had quit before they could form a majority.

The selection of “true believers” into the company was thus exacerbated by its lack

of progress with its technology. In a similar fashion, Moderna, the biotech company later

famous for developing novel mRNA vaccines for COVID-19, was characterized in 2016 as

having run into roadblocks in its ambitious projects, lost top talent, and simultaneously

retained employees that “live the mission” and “speak with respect bordering on awe about

Moderna’s promise” (Garde 2016).

5For instance, Theranos’s lead scientist, Ian Gibbons, told his wife that “nothing at Theranos was work-
ing,” years after joining the company (Carreyrou 2018: 146).

6For example, while deciding whether to buy more shares of the company at a low price, board member
Avie Tevanian was asked by a friend: “‘Given everything you now know about this company, do you really
want to own more of it?’ When Avie thought about it, the answer was no” (Carreyrou 2018: 40).
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The mapping of our model to firms depends on where the locus of decision-making lies

in the firm. In a start-up, the relevant decision-makers may be all employees above a certain

level, with comparable influence over decisions. In this case, our baseline model is appropri-

ate. For a larger firm controlled by investors free to trade shares on the secondary market,

a better fit is the model we develop in Section 4.2.

Finally, cooperatives are a related mode of organization that closely fit the assumptions

of our baseline model. Here agents are individual producers who own factors of production.

In a dairy cooperative, for example, each farmer owns a cow. The farmer can manufacture

and sell his own dairy products, or he can join the cooperative. If he joins, his milk will be

processed at the cooperative’s plants, which benefit from economies of scale. The cooperative

can follow a safe strategy, such as selling fresh milk and yogurt, or pursue a risky one—for

example, developing premium cheeses that may or may not become profitable. Should the

latter strategy be used, only farmers optimistic enough about its viability will join or remain

in the cooperative. Moreover, cooperatives typically allow their members to elect directors.

2 The Baseline Model

Time t ∈ [0,∞) is continuous. There is an organization that has access to a risky policy

and a safe policy. The risky policy is either good (ϑ = G) or bad (ϑ = B) and its type, ϑ,

is persistent.

There is a continuum of agents, distributed according to a continuous density f over

[0, 1]. An agent’s position indicates her beliefs: an agent x ∈ [0, 1] has a prior belief that the

risky policy is good with probability x. All agents discount the future at rate γ.

At every instant, each agent chooses whether to be a member of the organization. Agents

can enter and leave the organization at no cost. Agents who choose not to be members work

independently and obtain a guaranteed autarkic flow payoff a. The flow payoffs of members

depend on the organization’s policy.

While the organization uses the safe policy (πt = 0), all members receive a guaranteed

flow payoff s. When the risky policy is used (πt = 1), their payoffs depend on its type. If

the risky policy is good, it produces successes which arrive at the jump times of a Poisson

process with rate λ. If it is bad, it never succeeds. Each time the risky policy succeeds, all

members receive a lump-sum payoff of size h. At other times, they receive zero. We denote

by g = λh the expected flow payoff of the good risky policy.

We assume that 0 < a < s < g: the good risky policy dominates all other policies, the

bad risky policy is the worst option, and the organization’s safe policy is preferable to the
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outside option.7

When the risky policy is used, its successes are observed by everyone. By Bayes’ rule, an

agent with prior x who has seen the organization experiment unsuccessfully for a length of

time t believes that the risky policy is good with probability

pt(x) =
xe−λt

xe−λt + (1− x)
. (1)

Of course, all posteriors jump to 1 after a success.

The structure of the game is as follows. At each instant t > 0, policy and membership

decisions are made. That is, first the organization’s median member chooses the policy to

be used in the immediate future.8 After this, all agents are allowed to enter or leave the

organization.

To simplify the presentation, we make two assumptions. First, we assume that the risky

policy is being used at the start of the game, that is, π0 = 1.9 Second, we assume that

a switch to the safe policy is irreversible.10 We focus on Markov Perfect Equilibria, that

is, equilibria in which strategies condition only on the information about the risky policy

revealed so far and on the incumbent policy.

Since optimal membership decisions are quite simple, it is convenient to embed them

directly into the definition of equilibrium, as follows. Note that optimal membership decisions

must condition only on flow payoffs, even though the agents are forward-looking: x wants

to be a member at time t if and only if s + πt(pt(x)g − s) ≥ a. This is because there is

free entry and exit, so there is no need to remain a member during lean times to retain

access to future payoffs, or vice versa; and because there is a continuum of agents, so an

agent derives no value from her ability to vote. In particular, if the risky policy is being

used at time t and no successes have occurred, x will be a member if and only if pt(x)g ≥ a.

Clearly, pt(x) is increasing in x: ex ante optimists remain more optimistic after observing

7Our model features a single organization with access to a risky technology. We can, however, allow
for the existence of other organizations that only have access to safe technologies. a can be interpreted as
their (maximal) productivity. The assumption a < s means that the organization with access to the risky
technology also enjoys a competitive edge in the realm of safe technologies. Our main results go through if
a ≥ s, but become less interesting as there is no opportunity cost to having the organization experiment.

8The set of members will in fact always be an interval, hence Lebesgue measurable, so the median is well
defined. Equivalent results are obtained if we instead assume majority voting, as the median will be decisive.

9Starting with the safe policy at t = 0 is equivalent to starting with the risky policy, unless the population
median finds the continuation in the latter scenario inferior to the payoff from never experimenting, in which
case experimentation never begins.

10We show in the Appendix that this assumption is without loss of generality: in a more general model
with unlimited policy changes, switches to the safe policy are permanent in every equilibrium. The reason is
that switching to the safe policy brings in more pessimistic members, and hence yields control to a median
even more pessimistic than the one who chose to stop experimenting.
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information. Hence, if the organization has experimented unsuccessfully until t, the set of

members at t will be an interval of the form [yt, 1], where yt is defined by the condition

pt(yt) =
a
g
. Equation 1 implies that yt =

a
a+(g−a)e−λt . This, in turn, pins down the identity of

mt, the median member at time t under experimentation, as the median of F restricted to

[yt, 1]. On the other hand, if the safe policy is being used, or the risky policy is being used

after a success, then all agents will choose to be members, as s, g > a. And the organization

should of course always use the risky policy after a success.

In this “reduced-form” model, the only strategic decision left is the policy choice made

by the pivotal agent at each time t to continue experimenting or not, assuming there have

been no successes. We say t is a stopping time if mt would choose to stop experimentation

at time t. We can then define an equilibrium as follows.11

Definition 1. An equilibrium is given by a set of stopping times T ⊆ [0,∞) such that:

(i) If the organization has experimented unsuccessfully until time t, it continues to exper-

iment (t /∈ T ) if and only if mt’s payoff from the equilibrium continuation is greater

than the payoff from switching to the safe policy, s
γ
.

(ii) If mt is indifferent because experimentation will stop immediately regardless of her

action, but she strictly prefers experimentation (not) to continue for any length of time

ϵ > 0 small enough rather than stop, then she chooses (not) to continue experimenting.

To state Conditions (i) and (ii) more formally, it is useful to define the following value

functions. Let VT (y) be the continuation utility of an agent with current belief y who expects

experimentation to continue for a length of time T , counting from the present. Let V (y) be

the same agent’s continuation utility if she expects experimentation to continue forever, i.e.,

V (y) = limT→∞ VT (y). Note that VT (y) and V (y) are exogenous functions of the primitives,

not equilibrium objects. (Explicit formulas are given in Lemma 2 in the Appendix.)

Then, at time t, mt expects experimentation to continue until time t′ = inf{t′′ > t : t′′ ∈
T } if she does not stop. Condition (i) then requires that t ∈ T if Vt′−t(pt(mt)) <

s
γ
and

t /∈ T if Vt′−t(pt(mt)) >
s
γ
. Condition (ii) requires that, if t′ = t, then t ∈ T if Vϵ(pt(mt)) <

s
γ

for all ϵ > 0 small enough, and t /∈ T if Vϵ(pt(mt)) >
s
γ
for all ϵ > 0 small enough.

Though part (i) of the definition is straightforward, it embeds an important assumption

about the timing of policy and membership decisions: taking mt to be pivotal at time t

presumes that, for the organization to stop experimenting, a majority of those who chose

to be members under experimentation must be in favor of stopping. We are thus implicitly

11In Appendix B, we provide a formal definition of equilibrium that includes full membership and policy
strategies as primitives.
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ruling out the possibility of a large number of detractors of the current policy coordinating

to join the organization and immediately changing its policy.

One way to microfound this restriction would be to assume that agents only gain voting

power with a time lag ν > 0, so that it is in fact mt−ν who chooses the policy at time t. In

such a model, if the organization switched to the safe policy at time t0 due to an “invasion”

by pessimists, agents with no faith in the risky policy would strictly prefer to delay joining

until t0, and thus would not vote until t0+ ν, so the invasion would not actually materialize.

As this argument applies for all ν > 0, we require our equilibria to obey this property, even

if we are in fact taking ν = 0 for simplicity.

Condition (ii) imposes an additional tie-breaking rule in order to eliminate undesirable

equilibria of the following variety. T = [0,∞), for instance, satisfies Condition (i) vacuously

even if experimentation is desired by all agents, because any agent who deviates and chooses

experimentation would see her decision immediately overturned. To rule out such equilibria,

we require optimal behavior even when the agent’s policy choice only affects the path of play

for an infinitesimal amount of time.12

3 Analysis

In this Section we characterize the set of equilibria of the baseline model. We first provide

conditions under which perpetual experimentation is the unique equilibrium outcome, and

then show the range of possible outcomes when these conditions are not met. Finally, we

discuss the welfare properties of the model, and a simple extension with noisy news.

3.1 Perpetual Experimentation

It is useful to first note a few properties of our reduced-form model. First, the equilibrium

stopping time, which we will denote by t0, is the smallest (or, more generally, the infimal)

element of T . (If the risky policy is used forever, that is, T = ∅, we write t0 = ∞.) Other

elements of T only serve to inform the agents’ expectations about what will happen if they

deviate. Second, the population dynamics implied by the optimal membership decisions are

as follows. As long as no successes are observed, all agents become more pessimistic and the

organization contracts. That is, pt(x) decreases in t for all x, and yt increases towards 1.

Of course, after a success or a switch to the safe policy, all agents join and remain members

forever, and there is no further learning.

12Condition (ii) is in the spirit of weak dominance: an agent who prefers experimentation should experiment
if she expects her successors to tremble and continue experimenting with some positive probability.
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We can now state Proposition 1, which provides necessary and sufficient conditions for

perpetual experimentation to arise in equilibrium.

Proposition 1. Perpetual experimentation (T = ∅) is an equilibrium of the game if and

only if V (pt(mt)) ≥ s
γ
for all t. It is the unique equilibrium if and only if the inequality is

strict for all t.

The first part of Proposition 1 is straightforward. Recall that mt is the pivotal agent

at time t under unsuccessful experimentation, and pt(mt) is her posterior belief when she

is pivotal. V (pt(mt)) is thus her expected continuation value when pivotal, if she chooses

to continue experimenting and expects that no future pivotal agent will stop. s
γ
, on the

other hand, is her payoff if she stops. It follows that, if V (pt(mt)) <
s
γ
for any t, then

perpetual experimentation is not possible: if no one will stop experimenting after t, then mt

would herself make the choice to stop. On the other hand, if V (pt(mt)) ≥ s
γ
for all t, then

perpetual experimentation is an equilibrium by the same logic: if all pivotal agents expect

experimentation to never end, they are reduced to making a binary choice between their

respective V (pt(mt)) and
s
γ
, of which they weakly prefer the former.

What is less immediate is why, when perpetual experimentation is an equilibrium, it

is the only one.13 The key here is that if an agent prefers to experiment forever rather

than not at all, she also prefers to experiment for any finite amount of time T rather than

not at all. Thus, any pivotal agent mt for whom V (pt(mt)) >
s
γ
will never choose to halt

experimentation in equilibrium, no matter what she conjectures that her successors will do.

The technical reason for this result is that VT (y) is (strictly) single-peaked in T . That is,

letting T ∗ = argmaxT VT (y) be the (finite) stopping time an agent would choose if she could

control the policy at all times, her payoff decreases as T deviates from T ∗ in either direction.

Since V0(pt(mt)) =
s
γ
and limT→∞ VT (pt(mt)) = V (pt(mt)), it follows that, if V (pt(mt)) >

s
γ
,

then VT (pt(mt)) >
s
γ
for any T > 0.

We prove the single-peakedness by calculating VT (y) explicitly (Lemmas 2 and 3 in the

Appendix). But it is an intuitive result: VT (y) is what the agent would get from staying in

the organization until her posterior reaches a
g
(assuming unsuccessful experimentation), and

after that, staying out until there is a success or the safe policy is adopted (at time T ). The

higher T is, the more pessimistic the agent will be at time T , and the less she would want

to prolong experimentation.

Figure 1 illustrates the equilibrium dynamics under perpetual experimentation, for the

case a = 1, s = 1.725, h = 1, λ = γ = 6, and f uniform over [0, 1]. As the organization

experiments unsuccessfully, all agents become more pessimistic. Denoting by xt the agent

13There are multiple equilibria due to indifference if mint V (pt(mt)) =
s
γ , but this is a knife-edge case.
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Figure 2: Posterior beliefs on the equilibrium path

indifferent about stopping experimentation at time t (defined by V (pt(xt)) =
s
γ
), this implies

that xt is increasing in t. Thus there is a shrinking mass of agents in favor of the risky policy

(the agents shaded in crossed lines in Figure 1) and a growing mass against it (shaded in

lines and dots). For high t, most agents want experimentation to stop.

Growing pessimism, however, induces members to leave. Hence the marginal member

becomes more extreme, and so does the median member: as yt increases, so does mt. If

mt ≥ xt for all t, that is, if the prior of the median is always higher than the prior of the

indifferent agent, then the risky policy always retains majority support in the organization

due to most of the opposition forfeiting their voting rights.

Figure 2 shows the same result in the space of posterior beliefs. The accumulation of

negative information puts downward pressure on pt(mt) as t grows, but the selection effect

prevents pt(mt) from converging to zero. Instead, pt(mt) converges to a belief strictly between

0 and 1, which is above the critical value pt(xt) in this example. Hence the pivotal member

always remains optimistic enough to continue experimenting.

The result, perpetual experimentation, is clearly excessive: though in a world of het-

13



erogeneous priors agents disagree about the optimal length of experimentation, perpetual

experimentation is excessive from the point of view of all agents except those with prior

belief exactly equal to 1.

For what parameter values will V (pt(mt)) be greater than
s
γ
for all t, leading to perpetual

experimentation? Our next set of results aims to answer this question. Firstly, Proposition

2 provides either bounds or explicit closed-form expressions for inft V (pt(mt)) for several

families of prior belief distributions, allowing us to easily check the conditions of Proposition

1 in these cases. Secondly, the comparative statics established in Proposition 3 allow us to

use the results Proposition 2 as bounds for all distributions.

Proposition 2. The value function V in Proposition 1 satisfies the following:

(i) If f is non-decreasing, then

γ inf
t≥0

V (pt(mt)) = γV

(
2a

g + a

)
=

2ga

g + a
+

(
1

2

) γ
λ a(g − a)

g + a

λ

γ + λ
.

(ii) Suppose f(x) = fω(x) := (ω+1)(1−x)ω for x ∈ [0, 1] and f(x) = 0 elsewhere, for any

ω > 0. Then, denoting η = 2−
1

ω+1 ,

γ inf
t≥0

V (pt(mt)) = γV

(
a

ηg + (1− η)a

)
=

ga

ηg + (1− η)a
+ η

γ+λ
λ

a(g − a)
ηg + (1− η)a

λ

γ + λ
.

(iii) Let f be any density with support [0, 1]. Then

γ inf
t≥0

V (pt(mt)) ≥ γV

(
a

g

)
= a+

a(g − a)
g

λ

γ + λ
.

In calculating the value of inft V (pt(mt)), a key step is to find inft pt(mt), the infimal

posterior belief of a pivotal agent on the equilibrium path. It is shown in part (i) that, if

f is non-decreasing, then inft pt(mt) = 2a
g+a

. To illustrate the derivation, suppose that f

is uniform. Then mt ≡ 1+yt
2

, where yt = a
a+(g−a)e−λt as shown in Section 2. Thus mt =

2a+(g−a)e−λt

2a+2(g−a)e−λt which, by way of Equation 1, implies that pt(mt) = 2a+(g−a)e−λt

2a+(g−a)(1+e−λt)
, which

converges to 2a
g+a

from above as t→∞.

The case of a non-increasing density presumes that there are enough optimists in the

population. Part (ii) shows that the faster f(x) approaches 0 as x→ 1, the lower the value

of inft pt(mt), as the median mt is closer to the bottom of the interval [yt, 1]. In particular,

if f(x) ∼ (1−x)ω, then inft pt(mt) =
a

ηg+(1−η)a . At the other extreme, part (iii) gives a lower

bound based on the principle that pt(mt) ≥ pt(yt) ≡ a
g
, no matter the shape of f .
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The other step in the proof of Proposition 2 is to calculate V (y) for a generic belief y.

(A general formula is given in the Appendix.) The resultant expressions—for instance, the

expression for V
(

2a
g+a

)
—have a natural interpretation. The first term, 2ga

g+a
, is the payoff the

agent would get if she was locked into the organization forever: her posterior belief, 2a
g+a

,

times the expected flow payoff g of the good risky policy. The second term is the option

value of the agent’s exit and reentry options.

The following corollary leverages Proposition 2.(iii) to highlight the importance of the

gap between s and a:

Corollary 1. If a ∈
(

s
1+ g−s

g
λ

γ+λ

, s

]
, there is perpetual experimentation.

In other words, for any values of the other parameters, including the distribution of

priors, if a is close enough to s—that is, if the organization’s safe policy is not much better

than the outside option—then the organization never stops experimenting. The reason is

that the selection effect is at its strongest in this case, as most supporters of the safe policy

are tempted to exit before their voices can make a difference.

Our next result concerns the comparative statics of our model.

Proposition 3. If there is an equilibrium with perpetual experimentation under parameters

(λ, h, s, a, γ, f), then the same holds for any set of parameters (λ̃, h̃, s̃, ã, γ̃, f̃) such that λ̃ ≥ λ,

λ̃h̃ = λh, s̃ ≤ s, ã ≥ a, γ̃ ≤ γ and f̃ MLRP-dominates f , i.e., f̃(x)
f(x)

is non-decreasing in x.

The intuition is as follows. A decrease in s makes the safe policy less attractive and has

no effect on the payoff from perpetual experimentation. A decrease in γ makes the agents

more patient, which increases the option value of experimentation. An increase in λ while

holding g fixed increases the learning rate, with similar consequences.14 An increase in a has

two effects that favor experimentation: it increases the expected payoff of experimentation

(which entails collecting the outside option with some probability), and it induces agents to

quit, leaving the organization with a more radical median member.

Finally, an increase in the number of optimists leaves the value function V and the

marginal member yt unchanged, but results in a more optimistic median—an mt higher up

within the interval [yt, 1]—who is more likely to support experimentation. In particular,

then, for any f that MLRP-dominates fω as defined in Proposition 2.(ii), inf V (pt(mt)) is at

least as high as the expression given in Proposition 2.(ii). We can thus give tighter bounds

than the general bound in Proposition 2.(iii) whenever f decreases at a rate bounded by a

power law.

14In contrast, the effect of an increase in h (holding λ constant) is ambiguous: while a higher payoff from
the good risky policy encourages experimentation, it also discourages exit, weakening the selection effect.
However, the first effect dominates for all the prior distributions covered in Proposition 2.(i)-(ii).
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3.2 Finite Experimentation

If perpetual experimentation is not an equilibrium, there may be multiple equilibria

featuring different levels of experimentation, supported by different off-path behavior.

To characterize them, it is useful to define a stopping function τ : [0,∞) → [0,∞] as

follows: for each t ≥ 0, τ(t) is the highest t̃ ≥ t such that mt weakly prefers experimentation

to continue until t̃, relative to stopping right away. In particular, Vτ(t)−t(pt(mt)) = s
γ
. (If

the agent does not want to experiment at all, then τ(t) = t, while if she would accept

perpetual experimentation, then τ(t) = ∞.) Proposition 4 characterizes the set of pure

strategy equilibria in this setting.

Proposition 4.

(i) Any pure strategy equilibrium with finite experimentation, T ̸= ∅, must be a sequence

of the form (t0, τ(t0), τ(τ((t0)), . . .) for some t0 ≤ τ(0). The sequence may be finite,

ending at a fixed point of τ , or infinite.

(ii) There exists t0 ∈ [0, τ(0)] for which (t0, τ(t0), . . .) is an equilibrium.

(iii) If τ is non-decreasing and τ(0) is finite, then (t0, τ(t0), . . .) is an equilibrium for all

t0 ∈ [0, τ(0)].

(iv) If τ(t) =∞ for all t ∈ [0, T ], then t0 > T for any equilibrium stopping time t0.

Part (i) describes the general structure of a non-empty set of equilibrium stopping times:

each element tn of the sequence must be chosen to leave the previous pivotal agent who stops

in equilibrium, mtn−1 , indifferent. The logic is that, if stopping times were any further apart

(so that mtn−1 strictly wanted to stop, given the next expected stopping time), some later

pivotal agent mtn−1+ϵ would also want to stop, by a continuity argument. Conversely, if they

were any closer, mtn−1 would not stop at all, by the single-peakedness of VT . Moreover, the

initial (on-path) stopping time t0 must be weakly before τ(0), as otherwise m0 would deviate

and stop right away.

Setting t0 ∈ [0, τ(0)] and tn ≡ τn(t0) indeed guarantees that m0 will not stop and that

mtn is indifferent for all n. Part (iii) establishes that, under a regularity condition—if τ is

increasing15—this is all we need for T to be an equilibrium, so every t0 between 0 and τ(0)

can be supported as a stopping time by a (unique) set of conjectures about off-path behavior.

If τ is nonmonotonic, not all sequences of the form (t, τ(t), . . .) will be equilibria, because

15τ is guaranteed to be increasing if pt(mt) does not decrease too steeply. For example, if f(x) ∝ 1
x2 for

all x ≥ a
g , then pt(mt) ≡ 2a

g+a is constant, so τ(t)− t is constant, and τ is obviously increasing.

16



some pivotal agents between mtn and mtn+1 are more eager to stop than mtn is. But, by part

(ii), there is always some t0 for which this construction does yield an equilibrium.

It is easy to see that m0’s optimal stopping time lies between 0 and τ(0). Thus, from

her point of view, both over and under-experimentation are possible depending on which

equilibrium is played. Under-experimentation obtains if an early pivotal agent expects that,

should she continue experimenting, the next stopping time will be too far in the future—

that the organization will go down a “slippery slope” of excessive experimentation. In this

scenario, the agent is compelled to stop experimentation while the decision is still in her

hands, even at a time too early for her liking.16

Finally, part (iv) shows that perpetual experimentation is, in a sense, robust: if the

condition V (pt(mt)) >
s
γ
holds for all t up to some T , then experimentation must continue

until at least T . (As noted previously, agents willing to experiment forever will never stop

experimentation.) This implies that, if there is perpetual experimentation under a density

f(x), then there is almost perpetual experimentation (until an arbitrarily late T ) under a

truncated density of the form f(x)1x≤1−ϵ for ϵ > 0 small enough. Selection forces can thus

have powerful consequences even if the distribution of priors is bounded away from 1.

There are another two ways in which our results have bite even if the baseline model, as

presented, is too stark to be realistic (in particular, as it assumes that the organization’s size

can contract to nothing in the limit). First, if the organization is forced to disband below a

minimum size S < 1, then when this size is reached (i.e., for t such that 1−F (yt) = S) the safe

policy would be adopted, but experimentation would continue until t under the conditions

of Proposition 1. Second, all of our analysis is unchanged if the population is growing over

time—for example, if at time t there are eαt agents, with priors drawn from the density f , for

some α > 0. This assumption may be appropriate for countries undergoing political reforms,

and is also applicable to startups, which may reach more and more potential employees and

investors with each round of hiring and fundraising. In both cases, population growth may

mask the effects of exit on size, at least temporarily.

3.3 Welfare

It is instructive to consider how the equilibrium and its welfare properties change as

we vary the quality of the outside option, a. As a welfare benchmark, we focus on the

equilibrium utility of the initial pivotal agent, m0, net of the utility she could obtain if she

controlled the policy at all times, maxT VT (m0). Figure 3 plots this quantity as a function

16This force is related to the cause of under-experimentation in Strulovici (2010) in that, in both cases,
agents under-experiment to avoid a loss of control over future decisions. Similar concerns about slippery
slopes are the focus of the clubs literature (Bai and Lagunoff (2011), Acemoglu et. al. (2015)).
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Figure 3: m0’s equilibrium welfare loss relative to her first-best stopping time

of a.17 (Note that m0 is itself a function of a.) The shaded region represents the range of

welfare outcomes that obtain when multiple equilibria exist.

For a ≥ s, the organization experiments forever, but this outcome is in fact optimal, as

no agent is interested in the organization’s safe policy. For a ∈ [a, s], we are in the world

of Proposition 1: there is perpetual experimentation, which is excessive for all agents, in

particular m0. The lower a is, the earlier m0 would want to halt experimentation, and the

larger her welfare loss from over-experimentation. (a is defined such that V (m0) =
s
γ
.)

For a < a,m0 will not tolerate perpetual experimentation, so the (multiple) equilibria fea-

ture finite experimentation. In this example, as τ is increasing, every t0 ∈ [0, τ(0)] is an equi-

librium stopping time. This range includes m0’s ideal stopping time, as well as extremes—0

and τ(0)—that yield s
γ
. Thus m0’s welfare loss can range from 0 to maxT VT (m0) − s

γ
. For

low a, maxT VT (m0) is low, so the maximal welfare loss is lower as well. Finally, for a ≤ a,

τ(t) ≡ t, and nothing prevents m0 from obtaining her optimal outcome by stopping right

away. Thus, the welfare gap in the worst equilibrium is highest for intermediate values of a.

3.4 Public News

Finally, in a minor extension of the baseline model, we show that the organization can

have a perverse response to information: it can, paradoxically, experiment more in the

face of bad news. To see why, suppose that, at time 0, a preliminary test of the risky policy

generates a binary public signal σ ∈ {0, 1}, where 1 > P [σ = 1|G] > P [σ = 1|B] > 0. Agents

enter or exit in response, and the organization decides whether to continue experimenting.

Thereafter the game continues as in the baseline model.

Proposition 5. If there are public news at time 0, there exist parameters for which the

organization stops experimenting at a finite time after seeing σ = 1, but never stops after

σ = 0—and, as a result, uses the risky policy more in expectation when it is bad than when

it is good.

17Here s = 1.725, h = 1, λ = γ = 6, and f(x) ∝ 1
x2 for all x ≥ x0 with x0 small, which guarantees that

pt(mt) is constant, τ is increasing, and Proposition 4.(iii) applies.
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The intuition is simple: though a positive signal encourages experimentation, it also

attracts skeptics who now favor the risky policy slightly over their outside option, but still

rank the safe policy as the best choice. The latter effect dominates if f is high in a left-

neighborhood of the initial marginal member, a
g
. In that case, a measure of success can

paradoxically lead the organization to turn away from the risky strategies that brought that

very success. A salient version of this phenomenon is when the success of an innovative

company invites an acquisition by a parent corporation that, not having fully understood

what it bought, then begins to meddle in the company’s affairs and dilutes its strategy.18

4 Extensions

In this Section, we extend our model to allow for heterogeneous payoffs across agents,

as well as for continuous intensity of membership. Further extensions, discussed in the

Conclusion, are relegated to Appendix B.

4.1 Heterogeneous Outcomes

The baseline model concerns groups and organizations that take action and distribute

payoffs collectively. A related but distinct situation is when decisions are collective but

payoffs are ex post heterogeneous. For example, agents may have hidden types: some may

be “winners”, destined to reap the eventual benefits from the risky policy if it is used, and

others may be “losers”, who will get nothing—but these types are only learned through

experimentation. This setup, considered by Strulovici (2010), is a natural model of political

or economic reforms: for example, when switching from capitalism to communism or from

protectionism to free trade, citizens expect that some will benefit and others will suffer, but

cannot predict who ex ante.

To adapt our model to this case, we now assume a population divided into 2K+1 groups,

each with unit mass, for some K ∈ N. As before, individual agents can enter or leave the

organization, the outside option pays a, and the safe policy pays s. But instead of the

risky policy being good or bad for all agents, it is now either good or bad for each group

i (ϑi = G,B). Types are independent across groups; success realizations are independent

across groups, but common within each group. That is, if group i is a “winner” from the risky

policy then, while this policy is being used, the group experiences successes at rate λ, with

each giving a lump sum h to all group-i agents in the organization. These assumptions mean

18For example, Pixar’s success with boldly creative movies led to an acquisition by Disney, which then
pressured Pixar to pivot to a “safer” strategy focused on sequels and franchises (Orr 2017).
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that groups do not learn from each other but learning is perfectly shared within groups.19

The population of each group i is distributed according to a (common) density f with

support [0, 1]. An agent’s position now represents prior beliefs as follows: an agent x ∈ [0, 1]

in group i believes that ϑj = G with probability x for each j. (What matters is that x

believes ϑi = G with probability x; agents’ beliefs about other groups matter little.) We say

group i is a “sure winner” if it has experienced a success.

An equilibrium can be described by a set of stopping states T ⊆ R×N0, where (t, k) ∈ T
means the organization switches to the safe policy at time t if there are k sure-winner groups

at that time. We say there is perpetual experimentation if T = ∅, i.e., experimentation

never stops under any circumstances. Of course, experimentation must go on forever in some

histories: for instance, if k ≥ K + 1, a majority of sure winners will force experimentation

on all other agents.

This model reduces to our baseline model when K = 0. It instead coincides with

Strulovici (2010) when a = 0 and the distribution of priors is degenerate with x ≡ p0

for all agents. A central result of that paper is that, for large K, the stopping time is fi-

nite, and approximately such that the unsure voters’ posterior is s
g
—in other words, fears of

loss of control completely discourage experimenting for option value. Proposition 6 shows

that adding heterogeneous beliefs and exit to Strulovici’s model can dramatically change its

results, making over-experimentation at least as likely as in our baseline model.

Proposition 6. Perpetual experimentation is an equilibrium (and the only equilibrium) for

the exact same parameter values as in our baseline model.

The logic behind the result is as follows. Because some agents from each group al-

ways choose to remain and experiment, it is always possible for outsiders to learn about

their group’s type. Pessimists then leave when their own-group posteriors cross a
g
, as in

the baseline model. And, if perpetual experimentation is expected, any agent’s continua-

tion value V (y) from experimentation is exactly the same as in the baseline model. The

prior of the marginal and pivotal agents, yt and mt, is the same as in the baseline model

if there are no sure winners, i.e., in state (t, 0). When there are sure winners, all agents

from those groups join and support the risky policy forever, pushing the beliefs of the me-

dian member upward. Thus the case (t, 0) is the tightest, and the conditions for the baseline

model, relevant for that case, also guarantee that experimentation will continue with any

number of sure winners. The uniqueness result follows from a more involved version of the

argument for Proposition 1, unraveling from the case of K + 1 sure-winner groups.

19An alternative way of modeling heterogeneous payoffs would give all individual agents independent types
and successes, so the agent can only learn from herself, if she is a member. The results in that case track
more closely with the no re-entry version of the model covered in Appendix B.
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Even if the conditions for perpetual experimentation do not hold, the existence of sure

winners can shift the balance of power further in favor of experimentation, as optimists can

join forces with sure winners. For instance, in any history with even one sure-winner group,

experimentation will never stop after t∗ = 1
λ
ln
(
(2K − 1)g−a

a

)
, assuming a non-increasing f .

After this time, the sure-winner group will forever outnumber the remaining members from

all unsure groups. Thus, if V (pt(mt)) >
s
γ
for all t ≤ t∗, there is infinite experimentation with

high probability (that is, as long as any winners are revealed before t∗). In particular, there

can be infinite experimentation with high probability even if the support of f is bounded

away from 1, unlike in the baseline model.

4.2 Continuous Membership and Tradable Shares

Our baseline model highlights the effects of selection on experimentation under three im-

portant assumptions: membership is binary; the organization’s size is flexible; and there are

no property rights over the organization’s future payoffs. These assumptions are appropriate

for modeling political parties, social movements, or even firms in which the members with

de facto influence over decision-making are its employees (e.g., a close-knit start-up).

In this section we present a variant of the model more applicable to a publicly-traded firm

that is controlled by its shareholders. This model differs from the one in Section 2 in three

respects. First, the “intensity” of membership is adjustable: agents may have ownership

stakes of varying size. Second, entering or leaving the organization involves trading shares,

and may entail capital gains and losses. Third, the size of the firm’s operations (i.e., how

much capital or labor it employs, how large its payoffs) is not a direct result of entry and

exit, as investors trading on the secondary market cannot create or destroy shares.

We assume that voting power is proportional to stakes, so experimentation continues if

a share-weighted majority desires it. To make the problem non-trivial, we assume that the

agents are risk-averse, with CRRA utility functions.20 To isolate the effects of continuous

membership, we start with the assumption that the size of the firm is fixed.

The analysis yields two insights. First, continuous membership introduces another avenue

for self-selection: even among those who own shares, more optimistic members want a larger

stake. This effect intensifies as bad news arrive. Thus, the pivotal agent may become ex ante

more optimistic over time even when the size of the firm is fixed, which could not happen in

the baseline model. Second, selection forces are not strong enough in this setting to support

perpetual experimentation. Paradoxically, this is true even if the firm’s size is flexible as in

20Risk-neutrality leads to implausible results: the most optimistic agent would buy the entire firm. How-
ever, adding slight risk aversion to our baseline model would not qualitatively change the results, so it is
informative to compare the results from Section 2 with the ones from this section.
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the baseline model. The reason is that a success generates large capital gains in addition to

the initial lump-sum payoff. This is an irreducible risky payoff which, in the limit, cannot

be held by a vanishing share of the population.

In Appendix B, we show that perpetual experimentation is still possible if membership is

continuous and agents are risk-averse, but members can enter and exit for free and are entitled

only to current flow payoffs, as in the baseline model. In that case, there is, if anything,

more selection than in the baseline model, due to selection on the intensive margin. The

takeaway is that, while continuous membership gives even more power to optimists, capital

markets have a corrective effect on selection forces, and may curb excessive experimentation.

The model is as follows. There is a firm, as before, and a continuum of agents distributed

on [0, 1] with density f . The firm’s ownership is split into a unit mass of shares. There is a

homogeneous good which can be consumed or used as capital. The firm owns a stock a
γ
of

capital, and chooses at each time between a risky policy and a safe policy. Given this stock

of capital, the safe policy generates a constant return of s. If the risky policy is good, it

generates successes of size h at rate λ, where g = λh. If it is bad, it never succeeds. (We

are assuming that the firm’s size—the amount of capital employed—is fixed. With a generic

capital stock k, successes under the risky policy would pay kγ
a
h and the safe policy would

pay kγ
a
s.) These payoffs are distributed in proportion to shares. To simplify the analysis,

we assume that, after the first success, the firm can offer its owners a constant flow payoff g

rather than a stream of Poisson lump sums, e.g., by contracting with a risk-neutral insurer.

(Without this assumption, the post-success share price would fluctuate due to wealth effects.)

Each agent starts with an endowment W0 of the good.21 An agent who consumes at a

rate c obtains a flow utility u(c) = c1−θ

1−θ , where θ ∈ (0, 1] is the agents’ relative risk aversion.22

Agents can lend or borrow the good at an interest rate γ, the same as their discount factor

(possibly to or from unmodeled agents).23 Agents can also buy or sell shares in a secondary

market. Let ρt be the equilibrium price of a share, and let qt(x), ct(x), Wt(x) be the demand

for shares, consumption, and wealth of an agent with prior x, all at time t, under the

assumption that the risky policy has been used until then with no success. Let ρ = g
γ
be the

equilibrium share price after a success, and ρ = s
γ
the price after a switch to the safe policy.

Let ct(x; succ) be x’s (constant) consumption level after a success that occurred at time t.

An equilibrium is given by functions (qt(x), ct(x), ct(x; succ),Wt(x), ρt) and a set T of

stopping times such that the agents’ consumption paths and share demands are utility-

21Or we could assume that each agent starts with an endowmentW ′ and one share, and letW0 =W ′+ρ0.
22In particular, we cover the case of θ > 0 small, which approximates risk neutrality, and the case θ = 1

of logarithmic preferences. The case θ > 1 presents some technical differences but yields similar results.
23Note that if an agent could pull out her share of the firm’s capital and consume a constant flow from it

by lending, this would yield a consumption stream of size a.
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maximizing given the price path, policy path, and budget constraints; the market for shares

clears, that is,
∫ 1

0
qt(x)f(x)dx = 1 for all t; and a majority at time t weakly prefers to switch

to the safe policy if and only if t is a stopping time.

Proposition 7 provides a partial equilibrium characterization for this model.

Proposition 7.

(i) There is no equilibrium with perpetual experimentation.

(ii) In any equilibrium, qt(x) is weakly increasing in x for all t.

(ii) Moreover, if θ = 1, then qt(x) is MLRP-increasing in t, x.

Part (ii) of Proposition 7 shows that optimists select into the organization, and part (iii)

shows that this effect intensifies as time passes, in the case of logarithmic preferences.24 This

happens even though the firm is not shrinking operations as time passes to accommodate

the shrinking number of optimists, as in the baseline model; instead, it is purely the result

of selection on the intensive margin. An intuition is that share demands scale with each

agent’s posterior belief, pt(x), and more optimistic agents’ beliefs are more resistant to bad

news, that is, pt(x)
pt(x′)

is increasing in t for x > x′.

Yet, per part (i) of Proposition 7, perpetual experimentation is impossible in this model:

selection at the intensive margin has limits. A partial explanation is that, because the firm’s

size is constant, the per-capita share demands of ex post optimists must increase very quickly

over time if they are to retain control forever. More precisely, at each time t, a population

mass of approximate size e−λt must hold a majority of all shares. Due to risk aversion, even

optimists have diminishing returns from holding so many shares, as additional shares only

pay off when these agents are already rich. Then the optimists’ share demands can only be

this high if shares are so cheap that less optimistic agents also want to hold some—and they

then become the majority.

We might wonder, then, what happens if the firm did scale down in response to news as

in Section 2. Formally, suppose that the firm could employ any capital stock k ≤ a
γ
, and it

chose, at time t, to employ only a stock 0 < kt <
a
γ
and return the rest to shareholders, with

the intention of recapturing it (e.g., with a public offering) after a success or switch to the

safe policy. Näıvely, we might think that if kt decreases quickly enough, perpetual experi-

mentation might result, as the total amount of risky payoffs to be held by each optimistic

player could be kept bounded. But this intuition is incorrect.

24The logic is the same for all θ < 1, but in the general case, the path of share demands is complex due
to income effects: optimists want more shares proportional to their wealth, but they also over-consume in
anticipation of a success, reducing their wealth in the long run.
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Corollary 2. For any path of the firm’s capital stock (kt)t such that kt −−−→
t→∞

0, there is no

equilibrium with perpetual experimentation.

The reason is that, while the payoff generated by the first success may shrink, the fact

remains that after a success, the firm would bounce back to full size, and the value of its

shares would shoot up. Just these capital gains are enough to sustain the logic of Proposition

7.(i): the key is that voting power is tied to ownership not just of flow payoffs but also future

payoffs. In contrast, in an organization run by members rather than owners, membership

only entails exposure to current payoffs, and perpetual experimentation is possible even with

continuous membership. (See Proposition 15 in Appendix B.)

Proposition 7.(i) can also be overturned if the population of agents is assumed to grow

exponentially, at rate at least λ, over time. (That way, the total population of ex post

optimists remains stable in the long run.) This assumption may plausibly model the growth

phase of startups, in which they are continuously advertising and fundraising from broader

pools of investors.

5 Conclusion

In this paper we have laid out a theory of learning and decision-making in organizations

with endogenous membership. The most general principle emerging from our analysis is that

self-selection of agents dampens and may even reverse the effect of news on the organization’s

collective beliefs, as well as its policy. The co-determination of policy and membership can

induce path-dependence: firms in the same sector, or political parties with similar goals, may

adopt different approaches which attract sets of members with diverging beliefs, giving rise

to what may be seen as heterogeneous cultures. Culture thus defined may cause performance

differences, and it may be persistent: unlike individual agents, two organizations that differ

in their collective priors may fail to converge towards one another as information arrives.

As we have seen, the effects of self-selection are more severe the more feasible it is to

exit. Capture by experimenters becomes even easier if ex post payoffs are heterogeneous,

as optimists and sure winners can join forces. And if membership is a continuous choice,

further selection occurs at the intensive margin. However, capture by a minority becomes

more difficult when the controlling members are owners who must accept exposure to all

future payoffs, as in the case of publicly traded firms.

In Appendix B, we show that our results are robust to several modifications of the model.

Briefly, the analysis extends in straightforward fashion to more general voting rules, with

supermajority requirements making perpetual experimentation even more likely. Results are

similar if good news are imperfectly informative, i.e., if the bad risky policy also produces
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successes at a positive but lower rate. That case also yields an analogous result to Proposition

5: a streak of good news can paradoxically cause the risky policy to be abandoned. Perpetual

experimentation can also obtain in a model of bad news—though this is less surprising, as

even a single agent may want to experiment forever in a bad news environment. Our results

also do not qualitatively change if the organization’s payoffs, or its learning rate, are size-

dependent—e.g., if there are (dis)economies of scale—or if agents differ in their valuations

of the risky policy’s output rather than their priors. If quitters cannot reenter, perpetual

experimentation is still the equilibrium outcome, albeit for a smaller range of parameters.

Still other important extensions lie beyond the scope of the paper. For instance, orga-

nizations often choose between multiple risky policies. The same forces in our model may

cause such an organization to switch too infrequently, or never, from an unsuccessful policy

to an alternative, where a single agent would switch frequently to more promising policies.

The general point, then, is more about rigidity than over-experimentation per se. Indeed,

some famous examples of rigid decision-making are firms such as Blockbuster or Xerox that

kept doubling down on an apparently “safe” policy that became increasingly unviable.25

Organizations also often compete with each other. As a result, the population they

draw members from is also selected to be pessimistic about what other organizations are

doing. When the strategies of competing organizations are in opposition, beliefs within an

organization will be even more skewed towards optimism.

Finally, power is often in the hands of leaders and managers, even when they represent

the interests of members. Such leaders ought to be cognizant of how success might attract

“bandwagoners”, and how a period of decline may render the organization increasingly scle-

rotic. The same dynamics, of course, affect the leaders’ own ability to stay in power. An

important question is under what conditions a leader would have incentives to encourage

selection-induced inertia (as exemplified by the Curley effect) or to try and limit it.

Relatedly, we may ask how an organization could be designed to limit selection and

policy inertia. To counteract inertia directly, supermajority rules should be avoided. On the

contrary, it may be desirable to give greater weight to minorities in favor of policy changes.

Alternatively, the organization could stabilize the voter base by making exit costly (e.g., with

back-loaded pay, coercion, or by barring reentry), insulating (some) agents’ payoffs from the

outcome of its policy, or granting more voting power to senior members. One takeaway of

Section 4.2 is that ownership by shareholders would also help curb selection effects, relative

to a cooperative structure.

25Steve Jobs famously blamed the decline of Xerox on selection forces: namely, its focus on the copier
market led to “product people”, those with the sensibility to create new products, being “driven out of
decision-making forums” and replaced by “toner-heads” who saw no need for innovation, even as the early
PC market was booming (Tweedie 2014).
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A Proofs

We begin with a few preliminaries regarding the evolution of the agents’ beliefs, their

quitting times, and the shape of the value functions V (y) and VT (y).

Lemma 1. Let tz(y) denote the time it takes for an agent’s posterior belief to go from y to

z under unsuccessful experimentation. In particular, let t(y) = t
a
g (y) be the time it will take

for an agent with current belief y to quit. Then

tz(y) =
1

λ
ln

(
1− z
z

y

1− y

)
t(y) =

1

λ
ln

(
g − a
a

y

1− y

)
If y = 2a

g+a
, then e−λt(y) = 1

2
. If y = a

ηg+(1−η)a , then e
−λt(y) = η.

Proof of Lemma 1. Solving pt(y) =
ye−λt

ye−λt+1−y = z for t, we obtain e−λt
z(y) = z

1−z
1−y
y

or, equivalently, tz(y) = 1
λ
ln
(

1−z
z

y
1−y

)
. The rest are special cases. ■

Lemma 2. The value functions VT (y), V (y) satisfy the following equations:

VT (y) =y

[
g

γ
− e−(λ+γ)T g − s

γ

]
+ (1− y)e−γT s

γ
if T ≤ t(y). (2)

VT (y) =y

[
g

γ
− g − a
λ+ γ

e−(λ+γ)t(y) +

(
s− g
γ

+
g − a
λ+ γ

)
e−(λ+γ)T

]
+

+ (1− y)
[
a

γ
e−γt(y) +

s− a
γ

e−γT
]

if T > t(y). (3)

V (y) =y

[
g

γ
− g − a
λ+ γ

e−(λ+γ)t(y)

]
+ (1− y)a

γ
e−γt(y). (4)

Proof of Lemma 2. If T ≤ t(y), the agent never leaves the organization. Then

VT (y) =y

[∫ T

0

ge−γtdt+

∫ ∞

T

(
e−λT s+

(
1− e−λT

)
g
)
e−γtdt

]
+ (1− y)

∫ ∞

T

se−γtdt.

The first term is the agent’s utility conditional on the risky policy being good. Between 0

and T , she collects an expected flow payoff g. At time T , there is a probability e−λT that

no successes have occurred, in which case the safe policy is chosen and the agent receives s

thereafter. With probability 1− e−λT , a success has occurred, so the risky policy is retained

forever and the agent receives g. The second term is the agent’s utility in the bad state of the

world: a flow payoff s after the switch to the safe policy. Simplifying, we obtain Equation 2.
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If T > t(y), the agent leaves before the switch to the safe policy. Then

VT (y) =y

[∫ t(y)

0

ge−γtdt+

∫ T

t(y)

(
e−λta+

(
1− e−λt

)
g
)
e−γtdt+∫ ∞

T

(
e−λT s+

(
1− e−λT

)
g
)
e−γtdt

]
+ (1− y)

[∫ T

t(y)

ae−γtdt+

∫ ∞

T

se−γtdt

]
.

The only difference is that, between t(y) and T , the agent receives a if there have been no

successes. Simplifying yields Equation 3. Finally, we can obtain Equation 4 by taking the

limit of VT (y) as T →∞. ■

Lemma 3. (i) VT (y) and V (y) are continuous and strictly increasing in y, and differen-

tiable at all T ̸= t(y).

(ii) V0(y) =
s
γ
and ∂+VT (y)

∂T

∣∣∣
T=0

= max{yg, a} − s+ y λ(g−s)
γ

.

(iii) Letting T ∗ = argmaxT VT (y), T 7→ VT (y) is strictly increasing for T ∈ [0, T ∗] and

strictly decreasing for T > T ∗.

(iv) If V (y) > s
γ
, then VT (y) >

s
γ
for all T > 0.

Proof of Lemma 3. The continuity and differentiability of VT (y), V (y) are immediate

consequences of Lemma 2. That these functions are increasing in y can be proved directly,

by differentiating Equations 2–4 with respect to y, but it is also conceptually obvious, as an

agent with a higher prior can copy the behavior of one with a lower prior and still obtain a

higher expected payoff.

For part (ii), that V0(y) = s
γ
follows from the definition. For the rest of part (ii),

note that if yg > a then t(y) > 0, so ∂+VT (y)
∂T

∣∣∣
T=0

= yg − s + y λ(g−s)
γ

can be obtained by

differentiating Equation 2 with respect to T at T = 0. If yg < a then t(y) < 0, and
∂+VT (y)
∂T

∣∣∣
T=0

= a − s + y λ(g−s)
γ

follows analogously from Equation 3. Note in particular that

∂+VT (y)
∂T

∣∣∣
T=0

is strictly increasing in y.

For part (iii), we will relate the values of VT (y) for different values of T and y as follows.

Fix T0 ≥ 0 and ϵ > 0. Then

VT0+ϵ(y)− VT0(y) = e−γT0(ye−λT0 + 1− y)
(
Vϵ(pT0(y))−

s

γ

)
,

since VT0+ϵ(y) and VT0(y) only differ in the event that T0 is reached with no successes—an

event with probability (ye−λT0 + 1 − y)—and, in this scenario, they yield the respective
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continuation values Vϵ(pT0(y)) and
s
γ
, starting from T0. Taking the limit as ϵ→ 0,

∂VT (y)

∂T

∣∣∣∣∣
T=T0

= e−γT0(ye−λT0 + 1− y)∂VT (pT0(y))
∂T

∣∣∣∣∣
T=0

.

This implies that ∂VT (y)
∂T

∣∣∣
T=T0

is positive (negative) whenever
∂VT (pT0 (y))

∂T

∣∣∣
T=0

is positive (nega-

tive). In addition, we know that T0 7→ pT0(y) is decreasing by Equation 1, and z 7→ ∂VT (z)
∂T

∣∣∣
T=0

is increasing by part (i). Moreover,
∂VT (pT0 (y))

∂T

∣∣∣
T=0

is negative for large enough T0, as pT0(y)

tends to zero for all y < 1. Thus ∂VT (y)
∂T

∣∣∣
T=T0

is either always negative or changes signs once

from positive to negative. In the first case, T ∗ = 0. In the second, T ∗ is the unique solution

to ∂VT (y)
∂T

∣∣∣
T=T ∗

= 0. Either way, VT (y) is single-peaked in T . Intuitively, the higher is T0,

the more pessimistic the agent is at the stopping time, and the less she wants to prolong

experimentation at the margin.

Hence, if T ∗ > 0, VT (y) > V0(y) =
s
γ
for T ∈ (0, T ∗] because T 7→ VT (y) is increasing over

this region. For T > T ∗, VT (y) ≥ limT→∞ VT (y) = V (y) because T 7→ VT (x) is decreasing

over this region. Then, if V (y) > s
γ
, VT (y) >

s
γ
for T > T ∗, and of course T ∗ > 0, so part

(iv) follows. ■

Proof of Proposition 1. Suppose that all pivotal agents expect perpetual experimen-

tation in equilibrium (T = ∅). Then, when mt is pivotal, she expects a payoff V (pt(mt))

from continuing to experiment and a payoff s
γ
from stopping. If V (pt(mt)) ≥ s

γ
for all t, then

it is weakly optimal for all pivotal agents to continue, and hence T = ∅ is an equilibrium.

Conversely, if V (pt(mt)) <
s
γ
for some t, T = ∅ cannot be an equilibrium asmt would deviate

to the safe policy.

As for the uniqueness, if V (pt(mt)) ≥ s
γ
for all t with equality for some t, we can also

construct an equilibrium with stopping at t and nowhere else. It is left to prove that, if

V (pt(mt)) >
s
γ
for all t, then there are no other equilibria besides perpetual experimentation.

Suppose for the sake of contradiction that there is an equilibrium T ≠ ∅. Choose any t ∈ T ,
and let t′ = inf{t̃ ∈ T : t̃ > t} be the “next” stopping time after t. If t′ =∞, then mt would

receive V (pt(mt)) from continuing and s
γ
from stopping, so she strictly prefers to continue, a

contradiction. If t′ > t is finite, we similarly have a contradiction because, by Lemma 3.(iv),

V (pt(mt)) >
s
γ
implies Vt′−t(pt(mt)) >

s
γ
. Finally, if t′ = t, then mt’s payoffs from continuing

and stopping coincide. However, by Lemma 3.(iv), V (pt(mt)) >
s
γ
implies Vϵ(pt(mt)) >

s
γ

for all ϵ > 0, whence mt must choose to continue by Condition (ii), a contradiction. ■

Proof of Proposition 2.

We prove each inequality in two steps. First, we note that the median posterior belief,
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pt(mt), is uniformly bounded below for all t, with different bounds depending on the density

f . For any f with full support, pt(mt) ≥ pt(yt) =
a
g
. When f is uniform, pt(mt) ↘ 2a

g+a
, as

shown in the text. More generally, for any ω > 0, if f(x) = fω(x) ≡ (ω + 1)(1 − x)ω then

pt(mt)↘ a
ηg+(1−η)a , where η = 2−

1
ω+1 . This is a consequence of the following claim:

Claim 1. Suppose that the distribution of priors is fω for some ω ≥ 0. Then

pt(mt) =
a+ (1− η)(g − a)e−λt

η(g − a) + a+ (1− η)(g − a)e−λt
.

Proof of Claim 1. As shown in the text, yt =
a

a+(g−a)e−λt . The median mt is such that

2
∫ 1

mt
fω(x)dx =

∫ 1

yt
fω(x)dx, so that 2(1−mt)

ω+1 = (1− yt)ω+1. Hence 1−mt = η(1− yt),
which implies that

mt = 1− η + ηyt = 1− η + η
a

a+ (g − a)e−λt
=
a+ (1− η)(g − a)e−λt

a+ (g − a)e−λt
.

Substituting this expression into Equation 1 yields the result. ■

It is then immediate that pt(mt)↘ a
ηg+(1−η)a when f = fω.

Second, we observe that, since V (y) is strictly increasing and continuous in y (by Lemma

3.(i)), we have inft≥0 V (pt(mt)) = V (inft≥0 pt(mt)). Hence, to arrive at the bounds in the

Proposition, it is enough to evaluate V at the appropriate beliefs.

We begin with part (ii). To calculate V
(

a
ηg+(1−η)a

)
, we combine the results of Lemma 1

and Lemma 2. Substituting y = a
ηg+(1−η)a and e−λt(y) = η into Equation 4, we obtain

V

(
a

ηg + (1− η)a

)
=

a

ηg + (1− η)a

[
g

γ
− g − a
λ+ γ

η1+
γ
λ

]
+

η(g − a)
ηg + (1− η)a

a

γ
η

γ
λ

=
a

ηg + (1− η)a
g

γ
+ η1+

γ
λ (g − a) a

ηg + (1− η)a

[
− 1

λ+ γ
+

1

γ

]
which, after rearranging and multiplying both sides by γ, yields the equation from part (ii).

For part (i), calculating V
(

2a
g+a

)
is a special case of part (ii), with ω = 0 and hence η = 1

2
.

For part (iii), we substitute y = a
g
and t(y) = 0 into Equation 4 to obtain the value of V

(
a
g

)
.

The only thing left to do is show that part (i) holds for all non-decreasing f , not just when

f is uniform. Take f to be any non-decreasing density. Let m̃t denote the median at time t

under f , and letmt denote the median at time t under the uniform density. We will show that

inft pt(m̃t) = inft pt(mt) =
2a
g+a

, which of course implies that inft V (pt(m̃t)) = inft V (pt(mt)),

as desired. To do this, we will need three auxiliary results.
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Lemma 4. Suppose that f̃ MLRP-dominates f , i.e., f̃(x)
f(x)

is non-decreasing in x. Let m̃t

and mt be the median members at t under each respective density. Then m̃t ≥ mt for all t.

Proof of Lemma 4. Note that yt, the prior of the indifferent agent at time t, is

independent of the distribution of priors. By definition,
∫ mt

yt
f(x)dx =

∫ 1

mt
f(x)dx. Suppose

that m̃t < mt for some t. This is equivalent to∫ mt

yt

f̃(x)

f(x)
f(x)dx =

∫ mt

yt

f̃(x)dx >

∫ 1

mt

f̃(x)dx =

∫ 1

mt

f̃(x)

f(x)
f(x)dx.

Since f̃(x)
f(x)

is weakly increasing,

∫ mt

yt

f̃(mt)

f(mt)
f(x)dx ≥

∫ mt

yt

f̃(x)

f(x)
f(x)dx >

∫ 1

mt

f̃(x)

f(x)
f(x)dx ≥

∫ 1

mt

f̃(mt)

f(mt)
f(x)dx

which is a contradiction. ■

Lemma 5. Suppose f̃ is a non-decreasing density, and f is the uniform density over [0, 1].

Then 1−m̃t

1−mt
→ 1 as t→∞.

Proof of Lemma 5.

Let f̃0t = f̃(yt) and f̃1 = f̃(1). Suppose f̃ is continuous at 1. (If not, redefine f̃(1)

as supx∈[0,1) f̃(x), which does not alter m̃t.) By the same logic as in Lemma 4, we have

mt ≤ m̃t ≤ m̂t, where m̂t is the median corresponding to a density f̂ such that f̂(x) = f̃0t

for x ∈ [yt, m̂t] and f̂(x) = f̃1 for x ∈ [m̂t, 1]. Then
1−m̂t

1−mt
≤ 1−m̃t

1−mt
≤ 1, so it is enough to show

that 1−m̂t

1−mt
→ 1.

By construction, because m̂t is the median, we have f̃0t(m̂t − yt) = f̃1(1 − m̂t), so

m̂t =
f̃0tyt+f̃1
f̃0t+f̃1

. Thus 1 − m̂t =
f̃0t(1−yt)
f̃0t+f̃1

and, because mt =
yt+1
2

and 1 −mt =
1−yt
2

, we have

1−m̂t

1−mt
= 2f̃0t

f̃0t+f̃1
.

Since f̃ is continuous at 1, f̃(x) → f̃(1) as x → 1. Then, as t → ∞, yt → 1, f̃0t =

f(yt)→ f̃1 and 1−m̂t

1−mt
→ 1. ■

Lemma 6. Let xt, x̃t be two time-indexed sequences of agents such that xt ≤ x̃t for all t and

xt → 1 as t→∞. If 1−xt
1−x̃t → 1, then pt(x̃t)

pt(xt)
→ 1.

Proof of Lemma 6.

Applying Equation 1, we obtain

pt(x̃t)

pt(xt)
=

x̃te
−λt

x̃te−λt + (1− x̃t)
xte

−λt + (1− xt)
xte−λt

=
x̃t
xt

xt + (1− xt)eλt

x̃t + (1− x̃t)eλt
.
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Since xt → 1 and x̃t ≥ xt for all t, x̃t → 1, whence x̃t
xt
→ 1. In addition, since 1−xt

1−x̃t → 1,
(1−xt)eλt
(1−x̃t)eλt → 1. The result then follows, as

1← min

{
xt
x̃t
,
(1− xt)eλt

(1− x̃t)eλt

}
≤ xt + (1− xt)eλt

x̃t + (1− x̃t)eλt
≤ max

{
xt
x̃t
,
(1− xt)eλt

(1− x̃t)eλt

}
→ 1.

■

Lemma 5 shows that 1−m̃t

1−mt
→ 1, while Lemma 4 shows that m̃t ≥ mt for all t. And, of

course, mt → 1 as t→∞. Then Lemma 6 applies to the sequences m̃t and mt, guaranteeing

that pt(m̃t)
pt(mt)

→ 1 and hence pt(m̃t) → 2a
g+a

. In particular, inft pt(m̃t) ≤ 2a
g+a

. Since pt(m̃t) ≥
pt(mt) for all t by Lemma 4, inft pt(m̃t) ≥ inft pt(mt) =

2a
g+a

, concluding the proof. ■

Proof of Corollary 1. This follows from Proposition 2.(iii): if f has full support and

a ∈
(

s
1+ g−s

g
λ

γ+λ

]
, then

γ inf
t≥0

V (pt(mt)) ≥ γV

(
a

g

)
= a+

a(g − a)
g

λ

γ + λ
≥ a+

a(g − s)
g

λ

γ + λ
> s.

■

Proof of Proposition 3. Lemma 4 implies that an MLRP-increase in f increases

inft V (pt(mt)). An increase in γ decreases γV (y) by reducing the agent’s option value from

experimentation, while leaving s unchanged. We can verify this by differentiating Equation

4 with respect to γ:

∂ [γV (y)]

∂γ
= y(g − a) γ

λ+ γ
e−(λ+γ)t(y)t(y)− y(g − a)λ

(λ+ γ)2
e−(λ+γ)t(y) − (1− y)ae−γt(y)t(y)

= (1− y)a
[

γ

λ+ γ
− 1

]
e−γt(y)t(y)− y(g − a)λ

(λ+ γ)2
e−(λ+γ)t(y) < 0,

where we have used that e−λt(y) = a
g−a

1−y
y

by Lemma 1. An increase in λ with a proportional

decrease in h (so g remains unchanged) is formally equivalent to a decrease in γ up to a

relabeling of the time variable, so it has the same effects.

An increase in a increases V (y) for each y (this can be proved by differentiating Equa-

tion 4), and also increases yt, and hence mt, for each t. The effect of a change in s is

straightforward since it has no impact on V (y). ■

Proof of Proposition 4. We first note some properties of τ . Let t be the current time

and t∗ be the time at which mt would choose to stop experimenting if she had complete

control over the policy. In other words, t∗ = argmaxT VT−t(x).

If t∗ = t then, by Lemma 3, VT−t(x) <
s
γ
for all T > t, and τ(t) = t. If t∗ > t and
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V (pt(mt)) <
s
γ
, then, by the same lemma, VT−t(pt(mt)) crosses s

γ
only once, at a value of

T > t∗ equal to τ(t). Finally, if t∗ > t and V (pt(mt)) ≥ s
γ
, then Lemma 3 implies that

VT−t(pt(mt)) >
s
γ
for all T > t, so τ(t) =∞.

Next, we argue that τ is continuous. If τ(t0) ∈ (t0,∞) then, for t in a neighborhood

of t0, τ(t) is defined by the condition Vτ(t)−t(pt(mt)) =
s
γ
, where pt(mt) is differentiable in

t, and VT (x) is differentiable in (T, x) at (T, x) = (τ(t), pt(mt)) (by Lemma 2) and strictly

decreasing in T (by Lemma 3), so the continuity of τ follows from the Implicit Function

Theorem. The case τ(t0) = t0 is similar. τ is also continuous at ∞ if we take the one-point

compactification topology on [0,∞].

Consider a pure strategy equilibrium with finite experimentation, T ̸= ∅. Let t0 = inf T
be the stopping time on the equilibrium path. Clearly t0 ≤ τ(0), as otherwise m0 would

switch to the safe policy at time 0.

Suppose t0 ∈ T . Consider what happens at time t0 if mt0 deviates and continues exper-

imenting. Suppose first that τ(t0) ∈ (t0,∞). Let t1 = inf (T ∩ (t0,∞)) be the time when

experimentation stops in this continuation. We claim that t1 must equal τ(t0). To see why,

suppose that t1 > τ(t0). In this case, for all ϵ > 0 sufficiently small, mt0+ϵ would strictly

prefer to stop experimenting, which contradicts the assumption that t1 > τ(t0) > t0 was the

first stopping time after t0. On the other hand, if t1 < τ(t0), then mt0 would strictly prefer

to deviate from the equilibrium path and not stop. (If t1 = t0, mt0 would still deviate and

not stop by Condition (ii).)

Next, suppose that τ(t0) = ∞, that is, mt0 weakly prefers to continue experimenting

regardless of the continuation. Then it must be that t1 = ∞ and V (pt0 (mt0)) =
s
γ
, and in

this case we must still have t1 = τ(t0).

Now suppose that τ(t0) = t0, that is, mt0 weakly prefers to stop regardless of the con-

tinuation. In this case, the implied sequence of points is (t0, t0, . . .). This does not fully

describe the equilibrium, as it does not specify what happens conditional on not stopping

experimentation by t0, but still provides enough information to characterize the equilibrium

path fully, as in any equilibrium experimentation must stop at t0.

Finally, if t0 /∈ T , then must be a sequence (tk)k ⊆ T such that tk ↘ t0. Applying the

previous argument to mtk ’s stopping decision, we conclude that τ(tk) ≤ tk−1 (else mtk would

deviate). Taking the limit yields τ(t0) = t0, so mt0 stops no matter the continuation by

Condition (ii), i.e., t0 ∈ T , a contradiction.

We can iterate this argument to show that t1 = τ(t0) ∈ T is the second stopping time,

τ(t1) ∈ T is the third, and so on.

Next, we show that if τ is increasing and t ∈ [0, τ(0)], then T = (t, τ(t), τ(τ(t)), . . .)

constitutes an equilibrium. Our construction already shows that mtn is indifferent about
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switching to the safe policy at time tn = τn(t0). What is left is to show that for t /∈ T ,
mt weakly prefers to continue experimenting. Fix t ∈ (tn, tn+1). Since t > tn and τ is

increasing, τ(t) ≥ τ(tn) = tn+1. Hence the definition of τ(t) and the fact that T 7→ VT (x) is

single-peaked by Lemma 3 imply that Vtn+1−t(pt(mt)) ≥ s
γ
, as we wanted. This proves part

(iii).

Next, we show that even if τ is not increasing, this construction yields an equilibrium

for at least one value of t ∈ [0, τ(0)]. Note that our construction fails if and only if there is

t ∈ (tk, tk+1) for which τ(t) < tk+1. Motivated by this, we say t is valid if τ(t) = inft′≥t τ(t
′),

and say t is n-valid if t, τ(t), . . . , τ (n−1)(t) are all valid. Let A0 = [0, τ(0)] and, for n ≥ 1, let

An = {t ∈ [0, τ(0)] : t is n-valid}.
Suppose that τ(t) > t and τ(t) < ∞ for all t. Clearly, An ⊇ An+1 for all n, and the

continuity of τ implies that An is closed for all n. In addition, An must be non-empty for

all n by the following argument. Take t0 = t and define a sequence {t0, t−1, t−2, . . . , t−k} by
t−i = max {τ−1(t−i+1)} for i ≤ −1, and t−k ∈ [0, τ(0)]. By construction, t−k ∈ A0 is k-valid,

and, because τ(t) <∞ for all t, if we choose t large enough, we can make k arbitrarily large.26

Then A = ∩∞
0 An ̸= ∅ by Cantor’s intersection theorem, and any sequence (t, τ(t), . . .) with

t ∈ A yields an equilibrium. The same argument goes through if τ(t) = ∞ for some values

of t but there are arbitrarily large t for which τ(t) <∞.

If τ(t) = t for some t, let t = min{t ≥ 0 : τ(t) = t}. If there is ϵ > 0 such that

τ(t) ≥ τ
(
t
)
for all t ∈

(
t− ϵ, t

)
, then we can find a finite equilibrium sequence of stopping

times by setting t0 = t and using the backward construction in the previous paragraph. If

there is no such ϵ, then the previous argument works.27 The only difference is that, to show

the non-emptiness of An, we take t→ t instead of making t arbitrarily large.

If τ(t) > t for all t and there is t̃ for which τ(t) = ∞ for all t ≥ t̃, without loss of

generality, take t̃ to be minimal (that is, let t̃ = min{t ≥ 0 : τ(t) =∞}). Then we can find

a finite sequence of stopping times compatible with equilibrium by taking t0 = t̃, assuming

that mt0 stops at t0 and using the same backward construction. This finishes the proof of

part (ii). Finally, part (iv) is proved with the same logic as the uniqueness in Proposition 1.

More generally, if τ(t) =∞, then t /∈ T for any equilibrium T . ■

Proof of Proposition 5.

Let P [σ = 1|G] = π and P [σ = 1|B] = π. By Equation 1, the indifferent agent after

σ = 1 has prior x∗ = a
a+(g−a)π

π

< a
g
, while the indifferent agent after σ = 0 has prior

x∗ = a
a+(g−a) 1−π

1−π

> a
g
.

26Since τ is continuous, and τ(t) < ∞ for all t, the image of τ l restricted to the set [0, τ(0)] is compact
and hence bounded for all l. Thus, for any t larger than the supremum of this image, k > l.

27If there is ϵ > 0 with the required property, then τ−1(t) is strictly lower than t and reaching [0, τ(0)]
takes finitely many steps. If there is no such ϵ, then τ−1(t) = t and there exists a sequence converging to t.
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Given any values of a, λ, h, γ, choose s such that V
(
a
g

)
< s

γ
< V

(
2a
g+a

)
, and take f

as follows: f(x) = 0 for x ∈ [0, x∗]; f(x) = 1
2ϵ

for x ∈ (x∗, x∗ + ϵ); and f(x) = 1
2(1−x∗−ϵ)

for x ∈ [x∗ + ϵ, 1], for ϵ > 0 small enough. (The essence of the construction is simply

that f takes high enough values within [x∗, x
∗). Of course, it can be perturbed to make f

continuous.) Then, after bad news, the set of potential members during experimentation is

contained in [x∗, 1]. As f is uniform over this interval, the condition s
γ
< V

(
2a
g+a

)
guarantees

perpetual experimentation by Proposition 2. After good news, the median member is x∗+ ϵ,

whose posterior is arbitrarily close to a
g
for ϵ small enough. Then the condition V

(
a
g

)
< s

γ

guarantees finite experimentation in equilibrium. Moreover, for ϵ small enough, yt crosses

x∗ + ϵ after an arbitrarily short time, after which no stopping is possible, by the logic of

Proposition 4.(iv). So the equilibrium stopping time after σ = 1 must be arbitrarily close to

0, meaning that the time the risky policy is used for is determined almost entirely by σ, and

hence negatively correlated with the state. ■

Proof of Proposition 6. Let V (y), VT (y), yt denote the same functions as in the

baseline model. As for pivotal agents, note that if k groups have been revealed as winners,

there is a mass k of members always in favor of experimentation. Of the remaining 2K+1−k
groups, only agents with pt(x) ≥ yt will be members at time t. Then the pivotal agent, mt,k,

satisfies (2K + 1− k) [F (mt,k)− F (yt)] = k + (2K + 1− k) [1− F (mt,k)]. Clearly mt,0 = mt

from the baseline model, and mt,k is strictly increasing in k.

By the same logic as in Proposition 1, perpetual experimentation is an equilibrium if and

only if V (pt(mt,k)) ≥ s
γ
for all t, k. Because V and pt(·) are increasing functions, and mt,k is

increasing in k, this holds if and only if V (pt(mt,0)) ≥ s
γ
for all t, which is the same condition

from Proposition 1.

As for the uniqueness, if V (pt(mt)) ≥ s
γ
for all t with equality for some t, we can obviously

construct an equilibrium with stopping in state (t, 0) and nowhere else. The opposite impli-

cation is more involved. Suppose that V (pt(mt)) >
s
γ
for all t, and there is an equilibrium

T ̸= ∅. As noted in the text, any (t, k) ∈ T must have k ≤ K.

Suppose that there exists t0 such that (t0, K) ∈ T . Note that starting at (t0, K), if any

additional group is revealed as a winner, experimentation is locked in forever after, as there

are K + 1 sure-winner groups. There are two cases: either T ∩ {(t,K) : t > t0} is empty,

or not. In the first case, if mt0,K deviates and continues experimentation, it will never stop.

Then her equilibrium action contradicts the condition V (pt0(mt0,K)) > V (pt0(mt0)) >
s
γ
. In

the second case, experimentation next stops, if no more winner groups are revealed, at some

time t1 ≥ t0. Then mt0,K ’s continuation value from experimentation is a convex combination

of V (pt0(mt0,K)) (which she receives conditional on another group succeeding for the first

time before t1) and Vt1−t0(pt0(mt0,K)) (the complementary case). By Lemma 3, and because
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mt0,K > mt0 , the condition V (pt0(mt0)) >
s
γ
implies that V (pt0(mt0,K)), Vt1−t0(pt0(mt0,K)) >

s
γ
for all t1 > t0. Then mt0,K strictly prefers to experiment, a contradiction. (If t1 = t0,

Condition (ii) applies.)

Thus there is no t for which (t,K) ∈ T , i.e., experimentation never stops after K groups

are revealed winners. But then the same argument applies to histories of the form (t,K−1),

etc. Repeating the argument leads to the conclusion T = ∅, a contradiction. ■

Proof of Proposition 7. We first characterize the agents’ equilibrium share demands

and wealth and consumption paths given an expected path of prices (ρt)t and an expected

stopping time t0 ∈ [0,∞].

An agent’s per-share gain after the risky policy first succeeds is h+ ρ− ρt, if this success
occurs at time t. In addition, the instantaneous cost of holding a share through time t,

assuming no success, is γρt − ρ′t: ρ′t is the agent’s net capital gain, and γρt the opportunity

cost of not lending the funds invested in the share.

Let Qt(x) = qt(x)(h+ρ−ρt) be an agent x’s gain from success at time t, and ξt =
γρt−ρ′t
h+ρ−ρt

the flow cost of increasing Qt(x) by 1. Let Vt(W,x) be the continuation utility of an agent

x starting at time t, if her wealth at time t is W and there have been no successes, and let

Ut(W,x) be the same but assuming a success has occurred. Then the solution to the agent’s

consumption and investment problem must satisfy the following FOCs:

0 = γu′(ct(x))−
∂Vt(Wt(x), x)

∂W
(5)

0 = γu′(ct(x; succ))−
∂Ut(Wt(x) +Qt(x), x)

∂W
(6)

0 ≥ λpt(x)
∂Ut(Wt(x) +Qt(x), x)

∂W
− ξt

∂Vt(Wt(x), x)

∂W
(= if Qt(x) > 0 ) (7)

−∂u
′(ct(x))

∂t
= λpt(x)(u

′(ct(x; succ))− u′(ct(x))) (8)

These FOCs, which follow from the Hamilton-Jacobi-Bellman equation for the agent’s op-

timization problem, reflect the following tradeoffs. The agent must be indifferent at the

margin between consuming and saving at time t, if there has been no success (Equation

5), and between consuming and saving, immediately after a success that occurred at time t

(Equation 6).28 She must not want to buy any more shares at time t, and must be indiffer-

ent at the margin between saving and buying shares at time t if she buys a positive amount

(Equation 7). In addition, her (expected) consumption path must satisfy the Euler equation

(Equation 8).

28Of course the agent must remain indifferent for all s > t, but this condition simply leads to the con-
sumption path after a success being constant.
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Substituting Equations 5 and 6 into Equation 7, and using that u′(c) = c−θ, we obtain

λpt(x)u
′(ct(x; succ)) ≤ ξtu

′(ct(x))⇐⇒ ct(x; succ) ≥ ct(x)

[
λpt(x)

ξt

] 1
θ

, (9)

again with equality if Qt(x) > 0. Relatedly, Qt(x) > 0 if and only if γWt(x)
ct(x)

<
[
λpt(x)
ξt

] 1
θ
.

We can characterize for the agent’s path of choices as follows. Suppose that the agent is

holding some shares at time t, so ct(x; succ) = ct(x)
[
λpt(x)
ξt

] 1
θ
. Denote ĥ :=

∂h
∂t

h
. Using that

u′(c) = c−θ, and hence û′(ct(x)) = −θĉt(x), and substituting Equation 9 into Equation 8

yields that

θĉt(x) = −û′(ct(x)) = λpt(x)

(
u′(ct(x; succ))

u′(ct(x))
− 1

)
= ξt − λpt(x)

=⇒ c′t(x) =
ct
θ
[ξt − λpt(x)] =

ctξt
θ

(
1− λpt(x)

ξt

)
. (10)

Differentiating Equation 9 with respect to t, substituting in Equation 10 and using the

functional form of pt(x) (in particular, ∂pt(x)
∂t

= −λpt(x)(1− pt(x))) yields

ĉt(x; succ) = ĉt(x) +
1

θ

[
p̂t(x)− ξ̂t

]
=

1

θ
[ξt − λpt(x)] +

1

θ

[
−λ(1− pt(x))− ξ̂t

]
=

1

θ

[
−λ+ ξt − ξ̂t

]
=: Γt. (11)

The rate of change of ct(x; succ) is thus equal for all agents who are holding shares. An

intuition is that, while optimistic agents want to hold more shares over time, they also

consume more of their wealth in anticipation of a success, and these two effects cancel out.

The agent must also satisfy the following budget constraints:

W ′
t(x) = γWt(x)− ct(x)−Qt(x)ξt (12)

ct(x; succ) = γWt(x) + γQt(x) (13)

Equation 12 is the agent’s budget constraint before a success, while Equation 13 reflects that

the optimal consumption path after a success is constant. Combining these two equations
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with Equation 9,

W ′
t(x) = γWt(x)− ct(x)− ξt

(
ct(x)

γ

[
λpt(x)

ξt

] 1
θ

−Wt(x)

)

=⇒ (γWt(x))
′ = (γ + ξt)(γWt(x)− ct(x)) + ct(x)ξt

(
1−

[
λpt(x)

ξt

] 1
θ

)
. (14)

Equations 10 and 14 characterize the evolution of Wt(x) and ct(x) when share demand

is positive. Suppose now instead that Qt(x) = 0. Plugging this into Equation 12, and

ct(x; succ) ≡ γWt(x) into Equation 8, we obtain

(γWt(x))
′ = γ(γWt(x)− ct(x)) (15)

c′t(x) =
ct(x)

θ
λpt(x)

([
ct(x)

γWt(x)

] 1
θ

− 1

)
. (16)

We will now show the following:

Claim 2. Set θ < 1. For all t, γWt(x) ≥ ct(x). If Qt′(x) > 0 for some t′ > t, then

γWt(x) > ct(x).

Proof. Suppose that γWt(x) < ct(x) for some t. If the agent is not holding shares at t,

then, from Equations 15 and 16, c′t(x) > 0 and hence γW ′
t(x) − c′t(x) < γ(γWt(x) − ct(x)).

If instead Qt(x) > 0, note that 1− y 1
θ < 1−y

θ
for any y ̸= 1 and θ < 1, so

ct(x)ξt

(
1−

[
λpt(x)

ξt

] 1
θ

)
≤ ctξt

θ

(
1− λpt(x)

ξt

)
= c′t(x).

Then, from Equations 10 and 14, (γWt(x)− ct(x))′ ≤ (γ+ ξt)(γWt(x)− ct(x)) < γ(γWt(x)−
ct(x)). By Grönwall’s inequality, γWt′(x) − ct′(x) ≤ (γWt(x) − ct(x))eγ(t

′−t) for all t′ > t,

which goes to −∞. SinceW ′
t(x) ≤ γWt(x)−ct(x) by Equation 12,Wt(x) eventually becomes

negative, a contradiction.

Next, suppose γWt(x) = ct(x) for some t. If the agent is not holding shares at time t,

from Equations 15 and 16, Wt(x)
′ = ct(x)

′ = 0. If instead Qt(x) > 0, then λpt(x) > ξt. Then

γW ′
t(x) < c′t(x) by Equation 14, so γWt(x) < ct(x) in a right-neighborhood of t, leading to

the same contradiction. Hence either γWt(x) > ct(x) or γWt′(x) = ct′(x) for all t
′ > t and

the agent never holds shares after t. ■

Note that at the last time t(x) when an agent x ever holds shares, λpt(x) = ξt(x). For other

times t < t(x) when the agent starts or stops holding shares (Qt(x) = 0 but Qt′(x) > 0 for t′
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arbitrarily close to t), we must have
[
λpt(x)
ξt

] 1
θ
= γWt(x)

ct(x)
> 1. Hence λpt(x)

ξt
> 1 is a necessary

(but not sufficient) condition for x to hold shares. It then follows that c′t(x) < 0 for all

t < t(x): if the agent holds shares at t, then this follows from Equation 10 since λpt(x)
ξt

> 1,

and if not, it follows from Equation 16 and Claim 2. Finally, note that Equations 10, 14, 15

and 16 allow us to solve backwards for the agent’s choices starting from t(x), given a value

of Wt(x)(x).
29

If θ = 1, by analogous arguments, γWt(x) ≡ ct(x) andQt(x) > 0 if and only if λpt(x) > ξt.

We now prove part (i). Suppose there is an equilibrium with perpetual experimentation.

By Equations 9 and 13, and the fact that ct(x) ≤ c0(x) ≤ γW0, we have that for any x

holding shares at time t, γqt(x)(h + ρ − ρt) ≤ γW0

[
λpt(x)
ξt

] 1
θ
. Letting f = maxx∈[0,1] f(x),

and bounding h+ ρ− ρt ≥ h, it follows that

h =

∫ 1

0

qt(x)hf(x)dx ≤
λ

1
θW0

ξ
1
θ
t

∫ 1

0

(pt(x))
1
θ fdx ≤ λ

1
θW0f

ξ
1
θ
t

∫ 1

0

pt(x)dx.

Note that pt(x)
1
θ ≤ pt(x) because pt(x), θ ≤ 1. Since

∫ 1

0
xe−λt

xe−λt+1−xdx = e−λtλt
(1−e−λt)2

− e−λt

1−e−λt ≤
2λte−λt for t away from 0, there is M > 0 such that ξt ≤Me−λθttθ for all t away from 0. In

particular ξt → 0, so ρt → 0.30 Because ξt and pt(x) go to zero exponentially, Equations 10

and 16 imply that ct(x)↘ c(x) for some limit c(x) > 0.

We will now show that optimists eventually lose control, i.e., pt(mt) → 0. Suppose

instead that pt(mt) ≥ p > 0 for arbitrarily high t (say, for a sequence (tn)n going to ∞).

Note that mt ≥ p
p+(1−p)e−λt and 1−mt ≤ (1−p)e−λt

p+(1−p)e−λt ≤ (1−p)e−λt

p
for all t = tn.

From Equations 9, 10 and 16, c′t(x) ≤
ct(x)
θ

(ξt − λpt(x)), with equality when qt(x) > 0.

Because ξt goes to zero exponentially, and pt(x) goes to 1 exponentially as t decreases,
∫∞
0
ξt

and
∫ t
−∞(1 − pz(x))dz are finite. (Moreover, the latter integral is uniformly bounded for

all x, t such that pt(x) ≥ p.) And of course c0(x) ≤ γW0. Then there is M ′ such that

ct(x) ≤M ′e−
λ
θ
t for all x and t such that pt(x) ≥ p. Then, for all t = tn,

(1− p)e−λt

p
M ′e−

λ
θ
tλ

1
θ f

ξ
1
θ
t

≥
∫ 1

mt

ct(x)

[
λpt(x)

ξt

] 1
θ

f(x)dx ≥
∫ 1

mt

ct(x)

[
λpt(x)

ξt

] 1
θ

1qt(x)>0f(x)dx =

=

∫ 1

mt

ct(x; succ)1qt(x)>0f(x)dx ≥
∫ 1

mt

γqt(x)hf(x)dx =
γh

2
.

29This value can be normalized to 1 and at the end the solution can be scaled to satisfy W0(x) = W0,
since preferences are homothetic.

30Otherwise, along a sequence of local maxima of ρt converging to lim sup ρt, or a sequence going mono-
tonically to ρt with ρ

′
t going to zero, we must have lim supt ξt ≥

γ lim sup ρt

h+ g
γ

> 0.
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Then there is M ′′ > 0 such that ξt ≤ M ′′e−λ(θ+1)t for all t = tn. Thus λpt(x)
ξt
≥ λxeλθt

M ′′

for all x, t = tn, and γWt(x) + γQt(x) = ct(x; succ) ≥ ct(x)
[
λx
M ′′

] 1
θ eλt, whence Wt(x) ≥

1
γ

[
λx
M ′′

] 1
θ eλtc(x) − Qt(x), for all x, t = tn. Fixing an ϵ > 0, there is M̃ > 0 such that

Wt(x) ≥ M̃eλt − Qt(x) for all x ∈ [ϵ, 1 − ϵ], t = tn. Assume WLOG that tn ≥ n for all n.

Then Wtn(x) −−−→
n→∞

∞ a.s. in [ϵ, 1 − ϵ].31 Since this works for any ϵ, Wtn(x) −−−→
n→∞

∞ a.s.

in [0, 1]. Finally, Equation 12 then implies that there is x for whom Wt(x) ≥ Ceγt for all t,

which contradicts the agent’s transversality constraint.32

Thus, for any p, the fraction of shares held by agents with posterior at least p eventually

goes below 1
2
forever. By the same argument, for any p, z ∈ (0, 1), the fraction held by agents

with posterior at least p eventually dips under z forever. Using this result, we will show that

there cannot be a majority in favor of experimentation at all t.

If a deviation to the safe policy happens at time t, each x then consumes γWt(x) +

γqt(x)
(
s
γ
− ρt

)
forever. Under perpetual experimentation, we bound the agent’s continua-

tion utility starting at t as follows. The agent would be weakly better off if she kept her equi-

librium share demands (qt′(x))t′≥t but paid zero for them. If so, the expected present value

of her consumption stream in the continuation would be Wt(x)+ pt(x)
∫∞
t
e−γ(t

′−t)qt′(x)(h+

ρ − ρt′)λe−λ(t
′−t)dt′. Her certainty equivalent is lower, as she is risk-averse. Then, for any

agent in favor of experimentation, and for any t large enough that ρt <
s
2γ
,

qt(x)
s

2γ
≤ pt(x)

∫ ∞

t

e−(γ+λ)(t′−t)qt′(x)λ

(
h+

g

γ

)
dt′.

LetBt ⊆ [0, 1] be the set in favor of experimentation at time t. By assumption,
∫
Bt
qt(x)f(x)dx ≥

1
2
for all t. Then, for all t,

s

4γ
≤
∫
Bt

qt(x)
s

2γ
f(x)dx ≤

∫
Bt

[
pt(x)

∫ ∞

t

e−(γ+λ)(t′−t)qt′(x)λ

(
h+

g

γ

)
dt′
]
f(x)dx ≤

≤
∫ ∞

t

e−γ(t
′−t)
[∫ 1

0

pt′(x)qt′(x)λ

(
h+

g

γ

)
f(x)dx

]
dt′,

where in the last step we have used that pt′(x) ≥ pt(x)e
−λ(t′−t) for t′ > t. Clearly this

inequality cannot hold for all t if
∫ 1

0
pt′(x)qt′(x)f(x)dx goes to 0 as t′ → ∞. But of course

31Suppose not, i.e., there is A ⊆ [ϵ, 1 − ϵ] with positive measure and C > 0 such that, for every x ∈ A,
Wtn(x) ≤ C for arbitrarily high n. But then A ⊆ ∪n≥n0

An = {x : Wtn(x) ≤ C} for all n0, and |An| ≤
h+ g

γ

M̃eλn−C
which goes to zero exponentially, a contradiction.

32Recall that ct(x) ≤ γW0 and ξt ≤ M̂e−
λ
2 θt for all t. Take x such that Wtn(x) → ∞ and Q(x) :=∫∞

0
Qt(x)ξtdt ≤

∫ 1

0
Q(x)f(x)dx ≤

∫∞
0

(h+ g
γ )ξtdt <∞; such x must exist if the market-clearing constraint is

not violated. We can then show that, for t ≥ tn, Wt(x) ≥ (Wtn(x)−Q(x)− γW0)e
γ(t−tn) + γW0, so taking

n large enough that Wtn(x) > Q(x) + γW0 yields the result.
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∫ 1

0
qt′(x)f(x)dx ≡ 1, and pt′(x) goes to zero pointwise as t′ → ∞. For any p, z, take t such

that
∫
pt′ (x)≥p

qt′(x)f(x)dx < z for all t′ ≥ t. Then

∫ 1

0

pt′(x)qt′(x)f(x)dx =

∫ pt′ (x)≤p

0

pt′(x)qt′(x)f(x)dx+

∫ 1

pt′ (x)≥p
pt′(x)qt′(x)f(x)dx < p+ z

for all t′ ≥ t. Taking p, z low enough yields a contradiction.

For part (ii), we give a formula for Qt(x). Denote
∫ t
0
ξsds = ζt, and suppose Qt̃(x) > 0

for all t̃ < t(x) and Qt̃(x) = 0 for t̃ > t(x) for some t(x) > t. Using Equations 11 and 13,

ct(x; succ) = e
∫ t
0 Γt̃dt̃c0(x; succ) = e−

λt
θ
+

ζt
θ

(
ξ0
ξt

) 1
θ

c0(x; succ) (17)

Qt(x) = e
∫ t
0 Γt̃dt̃

c0(x; succ)

γ
−Wt(x). (18)

Substituting Equations 9, 17 and 18 into Equation 12 yields

W ′
t(x) = γWt(x)− e

∫ t
0 Γt̃dt̃c0(x; succ)

[
ξt

λpt(x)

] 1
θ

− ξt
(
e
∫ t
0 Γt̃dt̃

c0(x; succ)

γ
−Wt(x)

)
= (γ + ξt)Wt(x)− e

∫ t
0 Γt̃dt̃c0(x; succ)

[(
ξt

λpt(x)

) 1
θ

+
ξt
γ

]
.

Using the method of variation of parameters, for some C0,

Wt(x) = C0e
γt+ζt − c0(x; succ)eγt+ζt

∫ t

0

e−
λz
θ
+ ζz

θ
−γz−ζz

(
ξ0
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ

+
ξz
γ

]
dz.

Plugging in t = 0 yields C0 = W0. Denoting the factor multiplying c0(x; succ) by Zt, and

ψt = −λt
θ
+ ζt

θ
− γt− ζt,

Wt(x)(x) = W0e
γt+ζt − c0(x; succ)Zt(x) =

1

γ
ct(x)(x) =

1

γ
c0(x, succ)e

∫ t(x)
0 Γtdt

[
ξt(x)

λpt(x)(x)

] 1
θ

c0(x, succ) =
W0e

γt(x)+ζt(x)

Zt(x) +
1
γ
e
∫ t(x)
0 Γtdt

[
ξt(x)

λpt(x)(x)

] 1
θ

=
W0∫ t(x)

0
eψz

(
ξ0
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz + 1

γ
eψt(x)

(
ξ0

λpt(x)(x)

) 1
θ

.
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Substituting this value of c0(x; succ) into the previous equations,

ct(x; succ) =
W0e

−λt
θ
+

ζt
θ

(
1
ξt

) 1
θ

∫ t(x)
0

eψz

(
1
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz + 1

γ
eψt(x)

(
1

λpt(x)(x)

) 1
θ

ct(x) =
W0e

−λt
θ
+

ζt
θ

(
1

λpt(x)

) 1
θ

∫ t(x)
0

eψz

(
1
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz + 1

γ
eψt(x)

(
1

λpt(x)(x)

) 1
θ

Wt(x) = W0e
γt+ζt

∫ t(x)
t

eψz

(
1
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz + 1

γ
eψt(x)

(
1

λpt(x)(x)

) 1
θ

∫ t(x)
0

eψz

(
1
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz + 1

γ
eψt(x)

(
1

λpt(x)(x)

) 1
θ

Qt(x) = W0e
γt+ζt

1
γ
eψt

(
1
ξt

) 1
θ −

∫ t(x)
t

eψz

(
1
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz − 1

γ
eψt(x)

(
1

λpt(x)(x)

) 1
θ

∫ t(x)
0

eψz

(
1
ξz

) 1
θ

[(
ξz

λpz(x)

) 1
θ
+ ξz

γ

]
dz + 1

γ
eψt(x)

(
1

λpt(x)(x)

) 1
θ

If the agent holds positive shares all the way up to the firm’s stopping time t0, the same

equations apply, writing t0 in place of t(x).33 From the last equation, part (ii) is immediate

if comparing two agents x < x′ with the same quitting time (t(x) = t(x′)), or if both hold

shares until t0. This argument extends to the general case.34

For part (iii), set θ = 1. Recall that, in this case, qt(x) > 0 if and only if λpt(x)
ξt
≥ 1. Our

expression for Qt(x) simplifies to

Qt(x) = W0e
γt+ζt

1
γ
e−λt−γt 1

ξt
−
∫ t(x)
t

e−λz−γz
[
xe−λz+1−x
λxe−λz + 1

γ

]
dz − 1

γ
e−λt(x)−γt(x) xe

−λt(x)+1−x
λxe−λt(x)∫ t(x)

0
e−λz−γz

[
xe−λz+1−x
λxe−λz + 1

γ

]
dz + 1

γ
e−λt(x)−γt(x) xe

−λt(x)+1−x
λxe−λt(x)

= W0e
ζt

[
x

(
e−λt

λ

ξt
− e−λt + 1

)
− 1

]
.

33If the safe policy is adopted at t0, this affects share prices, as ρt −−−→
t→t0

s
γ , but it has no impact on ξt or

any other aspect of the solution: the windfall of switching to the safe policy is baked into share prices. If
agents are assumed to initially hold shares, this increases their initial wealth, but there are no other changes.

34Briefly, applying Equations 14 and 15, we can show that, if facing two price paths (ξt)t, (ξ̃t)t such that

ξ̃t < ξt for t in some set A and ξ̃t = ξt elsewhere, then
c̃t(x

′)

W̃t(x′)
≤ ct(x

′)
Wt(x′) ,

ˆ̃ct(x) ≤ ĉt(x), and c̃t(x) ≤ ct(x) for

all t ≤ inf A, whence Q̃t(x
′) ≤ Qt(x

′) for all t /∈ A, as Qt(x
′) = max

{
ct(x

′)

[
1
γ

(
λpt(x

′)
ξt

) 1
θ − Wt(x

′)
ct(x′)

]
, 0

}
.

Then we can replace the path ξt with ξ̃t = min

(
ξt, λpt(x)

(
ct(x)

γWt(x)

)θ)
. By construction, Q̃t(x) ≡ Qt(x),

Q̃t(x
′) ≤ Qt(x) for all t /∈ A, and our formula applies to Q̃t(x), Q̃t(x

′) since both agents weakly want to hold
shares at all times.
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In general, Qt(x) = max
{
W0e

ζt
[
x
(
e−λt λ

ξt
− e−λt + 1

)
− 1
]
, 0
}
.35 This is MLRP-increasing

in t if and only if A(t) = λ
ξt
e−λt− e−λt + 1 is decreasing in t. The market-clearing constraint

is

W0e
ζt

∫ 1

0

max {xA(t)− 1, 0} f(x)dx = h+ ρ− ρt.

The log-derivative of eζt with respect to t is ξt =
γρt−ρ′t
h+ρ−ρt , while the log-derivative of the

right-hand side is
−ρ′t

h+ρ−ρt , a lower value. Hence A(t) is decreasing in t, as we wanted.

■

Proof of Corollary 2. In this case, the instantaneous cost of a share is γρt−ρ′t+k′t, the
gain from a success is ktγ

a
h+ g

γ
−ρt−

(
a
γ
− kt

)
, and the windfall from switching to the safe pol-

icy is s
γ
− ρt−

(
a
γ
− kt

)
. Redefine ξt =

γρt−ρ′t+k′t
ktγ
a
h+ g−a

γ
−ρt+kt

, Qt(x) = qt(x)
(
ktγ
a
h+ g−a

γ
− ρt + kt

)
.

The same proof of Proposition 7.(i) applies, so long as
(
ktγ
a
h+ g−a

γ
− ρt + kt

)
and

(
s−a
γ
− ρt + kt

)
are bounded away from zero for all t large enough.

For the sake of contradiction, suppose lim inft→∞

(
ktγ
a
h+ g−a

γ
− ρt + kt

)
= 0.36 Equiva-

lently, lim sup ρt =
g−a
γ
. We will argue that then lim sup ξt =∞. Indeed, if ρt − kt has local

maxima arbitrarily close to g−a
γ
, ξt goes to infinity along a sequence of such maxima. If ρt−kt

has no local maxima for t greater than some t0, it must instead converge monotonically to
g−a
γ
, and ρ′t − k′t must be arbitrarily close to zero for large values of t, with the same result.

But then there is t for which ξt > λ, whence λpt(x)
ξt

< 1 for all agents and, as shown in

Proposition 7, no one holds shares, a contradiction.

Because the gain from a success is bounded away from zero, there is M > 0 such that

ξt ≤ Me−λθttθ for all t, as shown in Proposition 7.(i), and as ξt → 0, ρt → 0. (Note that

these partial results did not require the gains from the safe policy to be bounded away from

zero.) Then the windfall from switching to the safe policy is also bounded away from zero,

and the rest of the proof goes through. ■

35This expression is correct even if the agent’s share demand switches multiple times between positive and
zero in the future: in fact, it does not depend on the agent’s future choice set at all.

36Naturally this expression can never become negative, or no one would hold shares at that time.
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B Additional Extensions (Online Appendix)

B.1 Other Learning Processes

The baseline model has two salient features. First, experimentation has a low probability

of generating a success, which increases agents’ posterior beliefs substantially, and a high

probability of generating no successes, which lowers their posteriors slightly. In other words,

the baseline model is a model of good news. Second, because the risky policy can only

succeed when it is good, good news are perfectly informative.

In this Section, we relax these assumptions and develop variants of the model which allow

for imperfectly informative good news and for bad news. In the first case, we show that our

finding of over-experimentation is robust to imperfectly informative news. We also show

that the organization may respond perversely to information, becoming more reluctant to

experiment after a success—a more organic version of Proposition 5. In the case of perfectly

informative bad news, in contrast, there is typically under-experimentation.

A Model of Bad News

We consider the same model as in Section 2, except that the risky policy now generates

different flow payoffs: if the risky policy is good, it generates a guaranteed flow payoff g. If

it is bad, it generates a guaranteed flow payoff g but also experiences failures, which arrive

according to a Poisson process with rate λ. Each failure lowers the payoffs of all members

by h. Thus, as in the baseline model, the expected flow payoff from the risky policy is g

when it is good and 0 when it is bad. The learning process, however, is different.

The dynamics of organizations under bad news differ substantially from those in the

baseline model. As is usual in models of bad news, as long as no failures are observed, all

agents become more optimistic about the risky technology, so the organization expands over

time instead of shrinking. This gradual expansion continues either forever or until some

time T unless a failure occurs, in which case the organization switches to the safe technology

and all agents previously outside the organization become members. (The switch to the safe

technology must happen upon observing a failure but may happen even if no failures are

observed.)

As before, mt is the median member at time t provided that the risky policy has been

used up to time t, with no failures. pt(mt) is the median’s posterior belief at time t, and

V (pt(mt)) is her continuation value when experimentation is expected to continue forever

unless there is a failure. Let t be the earliest time when an agent with V (pt(mt)) <
s
γ
is

pivotal. Proposition 8 provides an equilibrium characterization for this model.
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Proposition 8.

(i) If V (pt(mt)) >
s
γ
for all t, then there is a unique equilibrium. In it, the organization

experiments forever.

(ii) If V (pt(mt)) <
s
γ
for some t, then in any equilibrium the organization stops experi-

menting at a finite time T < t.37

Proposition 8 shows that perpetual experimentation is the unique equilibrium outcome if

all pivotal agents prefer it to the safe policy. If, however, some pivotal agents are pessimistic

enough to halt experimentation, the organization switches to the safe policy even before any

of these pessimists become pivotal. Note that, when perpetual experimentation arises in the

bad news setting, it does not constitute over-experimentation, as it is possible only when all

agents agree that perpetual experimentation is optimal.

To understand these results, consider first the associated single-agent bandit problem. In

a model of bad news, the agent switches to the safe policy permanently upon observing a

failure, and becomes more optimistic over time if the risky policy produces no failures. The

more optimistic she becomes, the more she wants to use the risky policy. Hence the agent

wants to experiment either forever or not at all.

Two implications follow. First, pessimistic agents with V (pt(mt)) <
s
γ
always switch

to the safe policy when they are pivotal: they prefer no experimentation to perpetual ex-

perimentation, and thus also to any other continuation. Second, optimistic agents with

V (pt(mt)) >
s
γ
have stronger incentives to experiment if they expect experimentation to

continue in the future: only then can they collect the option value of learning about the

policy. For them, current and future experimentation are strategic complements.

This reasoning underpins part (ii) of the Proposition. Indeed, agents with V (pt(mt)) >
s
γ

are willing to experiment if they expect perpetual experimentation in the continuation.

However, agents who are pivotal shortly before t know that any experimentation they attempt

will be short-lived. Thus, even if optimistic, they may prefer to stop experimenting rather

than experience “success frustration”.38 In turn, their expected behavior may induce even

earlier pivotal agents to switch to the safe policy as well.

To summarize, in a bad news setting, over-experimentation is never possible from the

point of view of any pivotal agent, while under-experimentation is possible, and always

obtains when experimentation is finite. These results stand in stark contrast to those of

the baseline model. They depend on a special feature of the perfectly informative bad news

37This is true so long as t > 0. If t = 0, then T = 0.
38This effect is qualitatively similar to Strulovici (2010)’s winner frustration, i.e., the phenomenon of a

sure winner being unable to capitalize on her learning because too many others oppose the risky policy.
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learning process: bad news create common knowledge that the risky policy is bad. There is

then no room for organizational capture by optimists who would disagree with the majority.

Proofs

Lemma 7. In the bad news setting, the value function of an agent with current belief y who

is in the organization (y ≥ a
g
) and expects the organization to experiment forever unless a

failure is observed is

V (y) = (yg + (1− y)s) 1
γ
− (1− y)s 1

γ + λ
.

If she expects experimentation to end after a length of time T , her continuation value is

VT (y) = (yg + (1− y)s)1− e
−γT

γ
− (1− y)s1− e

−(γ+λ)T

γ + λ
+ e−γT

s

γ
.

Proof of Lemma 7. If the risky technology is good, it never experiences a failure, and

is never abandoned. The agent then receives an expected flow payoff of g forever. If the

technology is bad, it experiences a failure by time t with probability 1 − e−λt. The agent

receives 0 in expectation before the failure, and s after, as the safe policy is adopted. Then

V (y) =

∫ ∞

0

(
yg + (1− y)

(
1− e−λt

)
s
)
e−γtdt = (yg + (1− y)s) 1

γ
− (1− y)s 1

γ + λ
.

Similarly, in the case of finite experimentation,

VT (y) =

∫ T

0

(
yg + (1− y)(1− e−λt)s

)
e−γtdt+

∫ ∞

T

se−γtdt

= (yg + (1− y)s)1− e
−γT

γ
− (1− y)s1− e

−(γ+λ)T

γ + λ
+ e−γT

s

γ
.

■

Assumption 1. The parameters λ, h, s, a, γ, f are such that for all t′ > t, ∂
∂t
Vt′−t(pt(mt)) ̸=

0 whenever Vt′−t(pt(mt)) =
s
γ
.

Assumption 1 guarantees that the agents’ value functions are well-behaved: that is, for

each t′, the function t 7→ Vt′−t(pt(mt)) crosses the threshold s
γ
finitely many times, and is

never tangent to it. Under this assumption, Proposition 9 characterizes the equilibrium of

this model.
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Proposition 9. Under Assumption 1, there is a unique equilibrium T . T is the union of

a finite, possibly empty collection of intervals I0 = [t0, t1], I1 = [t2, t3], . . . , In such that

t0 < t1 < t2 < . . .. Conditional on the risky policy having reen used during [0, t] with no

failures, the median mt switches to the safe policy at time t if and only if t ∈ Ik for some k.

Proof of Proposition 9. We first argue that there exists T such that for all t ≥
T , if no failures have been observed during [0, t], then V (pt(mt)) >

s
γ
and pt(mt)g > s.

Note that, because in a model of bad news agents never exit, we have lim inft→∞mt > 0.

Moreover, limt→∞ e−λt = 0. This implies that limt→∞ pt(mt) = limt→∞
mt

mt+e−λt(1−mt)
= 1, so

limt→∞ pt(mt)g = g > s. Provided that no failures have been observed during [0, t], we have

limt→∞ V (pt(mt)) = V (1) because V is continuous, and V (1) = g
γ
> s

γ
.

Next, we argue that these agents will always experiment.

Claim 3. If pt(mt)g > s, then in any equilibrium mt continues experimenting.

Proof of Claim 3. Suppose not. Let t + t+ denote the first time after t when the

equilibrium prescribes a switch to the safe policy.39 Then mt’s payoff if she does not stop

experimentation is Vt+(pt(mt)). From Lemma 7, it follows that if yg > s then VT (y) >
s
γ
for

all T > 0. In particular, Vt+(pt(mt)) >
s
γ
. Thenmt strictly prefers to continue experimenting,

a contradiction. ■

We can now already deal with one important case: if V (pt(mt)) >
s
γ
for all t, then the

organization experiments forever. The reason is as follows. For t ≥ T , all pivotal agents mt

continue experimenting by Claim 3, so T ⊆ [0, T ). Assume T is nonempty. Let t∗ = sup T .
If t∗ ∈ T , then mt∗ stops experimenting even though V (pt(mt)) >

s
γ
and mt∗ gets perpetual

experimentation by continuing, a contradiction. If t∗ /∈ T , a similar argument can be made

leveraging Condition (ii).

Suppose then that there exists t ≤ T such that V (pt(mt)) <
s
γ
.

Claim 4. Suppose that in some equilibrium T , mt0 stops experimenting (t0 ∈ T ). If

pt(mt)g < s for all t ∈ [t, t0), then [t, t0) ⊆ T .

Proof of claim 4. Suppose not. Then there exists a non-empty subset B ⊆ [t, t0) such

that for all t ∈ B, mt continues experimenting.

There are two cases. In the first case, B has a non-empty interior. In this case, for

all ϵ > 0 small, there must exist τ ∈ [t, t0) such that, starting at time τ , experimentation

continues up to time τ + ϵ and then stops.40

39We write the argument assuming that t+ > 0. If t+ = 0, the proof follows a similar argument leveraging
Condition (ii).

40To find such τ , let t̃ be in the interior of B, and let t̂ = inf{t ≥ t̃ : t /∈ B}. Then τ = t̂− ϵ works for all
ϵ > 0 small enough.
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mτ ’s payoff from continuing experimentation is Vϵ(pτ (mτ )), which, by Lemma 7, is of the

form s
γ
+(pτ (mτ )g−s)ϵ+O(ϵ2). The payoff from stopping is s

γ
. Then, since pτ (mτ )g < s by

assumption, for ϵ small enough mτ strictly prefers to stop experimenting, a contradiction.

In the second case, the interior of B is empty. In this case, the proof follows a similar

argument leveraging Condition (ii). ■

Let t2n+1 = sup{t : V (pt(mt)) <
s
γ
} denote the largest time for which the median stops

experimenting.

Let T1 = {t ≤ t2n+1 : pt(mt)g ≤ s} and T2 = {t ≤ t2n+1 : pt(mt)g > s}. Our gener-

icity assumption (Assumption 1) implies that T1 and T2 are finite collections of intervals.

Enumerate the intervals such that T1 = ∪ni=0[ti, ti].

Suppose first that pt(mt)g ≤ s for all t < t2n+1. In this case, by claim 4, for all t ≤ t2n+1,

mt stops experimentation. Then we set n = 0, t0 = 0 and I0 = [t0, t1].

Suppose next that there exists t < t2n+1 such that pt(mt)g > s. Set t2n = sup{t < t2n+1 :

pt(mt)g > s}. Since the distribution of priors is continuous, t 7→ pt(mt) is continuous, which

implies that pt2n(mt2n)g − s = 0. Then claim 4 implies that for all t ∈ [t2n, t2n+1], mt stops

experimentation. Note also that t2n < t2n+1 as s = γV (pt2n+1(mt2n+1)) > pt2n+1(mt2n+1)g.

Let us conjecture a continuation equilibrium path on which, starting at t, the organi-

zation experiments until t2n. We then let t2n−1 = sup
{
t < t2n : Vt2n−t(pt(mt)) ≤ s

γ

}
. By

construction, for t ∈ (t2n−1, t2n) we have Vt2n−t(pt(mt)) >
s
γ
, so the median mt continues

experimenting for all t ∈ (t2n−1, t2n).

Since the map t 7→ Vt2n−t(pt(mt)) is continuous (by continuity of the prior distribution

plus Lemma 7), we must have t2n−1 = max
{
t < t2n : Vt2n−t(pt(mt)) ≤ s

γ

}
. Note that it is

then consistent with equilibrium for the median mt2n to stop experimenting.

Now note that if Vt2n−t2n−1(pt2n−1(mt2n−1)) =
s
γ
, then pt2n−1(mt2n−1)g < s. By continuity,

there exists an interval [ti, ti] in T1 such that t2n−1 ∈ [ti, ti] (and ti satisfies ti = min{t <
t2n−1 : pt(mt)g ≤ s}).

Set t2n−2 = ti. Because pt(mt)g ≤ s for all t ∈ [t2n−2, t2n−1], Claim 3 implies that, for all

t ∈ [t2n−2, t2n−1], mt stops experimenting.

We then proceed inductively in the same manner, finding the largest t strictly less than

t2n−2 such that Vt2n−2−t(pt(mt)) ≤ s
γ
. Because T1 is finite collection of intervals, the induction

terminates in a finite number of steps.

The equilibrium is generically unique for the following reason. Under Assumption 1, each

t2k+1 satisfies not only Vt2k+2
(pt2k+1

(mt2k+1
)) = s

γ
but also ∂

∂t
Vt2k+2−t(pt(mt))|t=t2k+1

> 0, that

is, Vt2k+2−t(pt(mt)) <
s
γ
for all t < t2k+1 close enough to t2k+1. Thus, even if we allow mt2k+1

to continue experimenting, all agents in (t2k+1− ϵ, t2k+1) must stop as they strictly prefer to

do so. Likewise, each t2k satisfies not only pt2k(mt2k)g − s = 0 but also ∂
∂t
pt(mt)|t=t2k < 0,
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that is, pt(mt)g − s > 0 for all t < t2k close enough to t2k. Thus, even if we allow mt2k to

stop experimenting, all agents in (t2k − ϵ, t2k) must stop as they strictly prefer to do so. ■

Proof of Proposition 8. Part 1 is proved as part of Proposition 9. Part 2 follows

from the characterization given in Proposition 9, in particular, from the observation that

t2n < t2n+1. ■

A Model of Imperfectly Informative (Good) News

The case of imperfectly informative news allows for richer dynamics than the baseline

model: agents’ beliefs, rather than decreasing monotonically or jumping to 1, can change in

both directions as successes and failures arrive. For brevity, we consider the case of good

news, but similar results can be obtained for imperfectly informative bad news.

The model is the same as in Section 2 except for the payoffs generated by the risky policy.

If the risky policy is good, it generates successes of size h according to a Poisson process

with rate λ. If it is bad, successes instead arrive at a rate λ′ < λ. We denote g = λh and

b = λ′h, and assume that g > s > a > b > 0.

The effect of past information on the agents’ beliefs can be aggregated into a one-

dimensional sufficient statistic. Suppose the risky policy has been used for a length of

time t and k successes have occurred during that time. The posterior belief of an agent with

prior x must then be

x(λt)ke−λtk!

x(λt)ke−λtk! + (1− x)(λ′t)ke−λ′tk!
=

x

x+ (1− x)L(k, t)
,

where

L(k, t) =

(
λ′

λ

)k
e(λ−λ

′)t.

We will suppress the dependence of L(k, t) on k and t and use L to denote our sufficient

statistic, and focus on Markov equilibria with L as the state variable. Note that high L

indicates bad news about the risky policy.

Let pL(x) be the posterior belief of an agent with prior x in informational state L. Let

V (x, L) be the value function of an agent with prior x given that the informational state is L

and the organization experiments forever in the continuation. In addition, denote x’s ex ante

utility under perpetual experimentation, V (x, 1), by V (x). (Of course, V (x, L) = V (pL(x)).)

The next Proposition shows that, as in Section 3, experimentation can continue forever

regardless of how badly the risky policy performs.

Proposition 10. If V (m(L), L) > s
γ
for all L, then there is a unique equilibrium. In this
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equilibrium, experimentation never stops, no matter the outcome.

Moreover, if f is non-decreasing, then V (m(L), L) ≥ V
(

2(a−b)
(g−b)+(a−b)

)
≥ 1

γ
(g−a)b+2(a−b)g
(g−b)+(a−b) ,

so there exist parameter values such that V (m(L), L) > s
γ
for all L.

The first part of Proposition 10 mirrors Proposition 1, based on similar logic. The

second part is an abbreviated analog of Proposition 2 (of course, similar bounds can be

given for other families of densities, as in Proposition 2.(ii), (iii)). It implies that perpetual

experimentation obtains, for instance, if g is high enough and 2a− b > s. The lower bound

we provide for V is based only on the expected flow payoff of the risky policy; it is hard to

give a closed form expression for the option value of experimentation in this case.

The following result shows that, under imperfectly informative news, the organization

may respond perversely to information, as anticipated in Proposition 5.

Proposition 11. There exist parameters such that there is an equilibrium in which the

organization experiments more when the risky policy is bad than when it is good.

The intuition for the result in Proposition 11 is as follows. We first show that, for

an appropriately chosen density f , an equilibrium of the following form exists: whenever

L = L∗, the organization stops experimenting with probability ϵ, and at all other times the

organization continues experimenting for sure. For this to work, f must be such that the

pivotal agent is most pessimistic when L = L∗.41 Moreover, smust be such that Vm(L∗)(L
∗) =

s
γ
, so that the median is indifferent about stopping experimentation at L∗, while other agents

prefer to continue experimenting when they are pivotal.

The striking feature of this equilibrium is that stopping only happens for an intermediate

value of L. In particular, if L∗ < 1, the only way experimentation will stop is if it succeeds

enough times for L to decrease all the way to L∗, which is more likely to happen when the

risky policy is good.

Proofs

Proof of Proposition 10. The proof is largely analogous to the proofs of Propositions

1 and 2 for the baseline model. If V (m(L), L) > s
γ
for all L, perpetual experimentation is

clearly an equilibrium, as each pivotal agent m(L) has a choice between V (m(L), L) and
s
γ
, and strictly prefers the former. The equilibrium is unique by the following argument.

41This occurs, for instance, if f is very high in a small neighborhood of y(L∗). Then, when L > L∗, all
the pessimists to the left of y(L∗) leave, so that m(L) is more optimistic, while when L < L∗, pessimists
become members, yielding a lower m(L).
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Suppose for the sake of contradiction that there is another equilibrium in which experimen-

tation stops whenever L ∈ L ≠ ∅. Let VL(x) denote the continuation utility of an agent

with current belief x in this equilibrium.

For L close enough to 0, it can be shown that pivotal agents will prefer to experiment no

matter what equilibrium continuation they expect. That is, VL(x) ≥ s
γ
for all L and x close

enough to 1. In other words, there is L0 > 0 such that L ⊆ (L0,+∞).

Let L1 = inf L. In analogous fashion to Lemma 3.(iv), we argue that, if m(L1) would

rather experiment forever than not at all, she would also prefer to experiment until L hits

L. That is, if V (p(L1,m(L1))) >
s
γ
then VL(p(L1,m(L1))) ≥ s

γ
. To see why, suppose

that VL(p(L1,m(L1))) <
s
γ
. Note that V (p(L1,m(L1))) and VL(p(L1,m(L1))) differ only

in that, at histories when any element L of L is first hit, the agent’s continuation value is

V (p(L,m(L1))) in the first case and s
γ
in the second. By construction, V (p(L,m(L1))) ≤

V (p(L1,m(L1))) for all L ∈ L. Letting B be the discounted flow payoffs obtained in these

continuations and A be the flow payoffs from all other histories, there is then ρ ∈ [0, 1)

such that V (p(L1,m(L1))) = ρA + (1 − ρ)B, VL(p(L1,m(L1))) = ρA + (1 − ρ) s
γ
, and B ≤

V (p(L1,m(L1))).
42 Then s

γ
< V (p(L1,m(L1))) ≤ A and hence VL(p(L1,m(L1))) ≥ s

γ
.

Moreover, there is equality only if ρ = 0, in which case m(L1) would still experiment by

Condition (ii). The same argument extends to all L in a neighborhood of L1, as even a

single success pushes Lt strictly left of L1. But then inf L must be strictly greater than L1,

a contradiction.

This proves the first statement. Next, we provide an explicit bound on V when f is non-

decreasing. Note that in this model, an agent with belief y expects a flow payoff yg+(1−y)b
from the risky policy and a from the outside option. She would then choose to join if and

only if y ≥ a−b
g−b . In particular, the marginal member y(L) in state L satisfies y(L)

y(L)+(1−y(L))L =

p(L, y(L)) = a−b
g−b . Rearranging yields y(L) = a−b

a−b+(g−a) 1
L

. Then, as f is non-decreasing,

m(L) ≥ 1+y(L)
2

= 2(a−b)L+g−a
2(a−b)L+2(g−a) , and p(L,m(L)) = m(L)

m(L)+(1−m(L))L
= 2(a−b)L+g−a

2L(a−b)+L(g−a)+g−a ↘
2(a−b)

2(a−b)+(g−a) as L goes to infinity. Finally, it is obvious that V (y) ≥ yg+(1−y)b
γ

, as the agent

could obtain this payoff by never leaving; substituting y = 2(a−b)
2(a−b)+(g−a) yields the inequality

in the Proposition. ■

Lemma 8. There exists a density f for which some interior state L∗ is the unique minimizer

of p(L,m(L)); p(L∗,m(L∗)) < limL→∞ p(L,m(L)); and L 7→ p(L,m(L)) has a kink at L∗,

with strictly positive right-derivative.

Proof of Lemma 8. A construction similar to the one given in Lemma 5 works. Take

f as follows: f(x) = 0 for x ∈ [0, x∗]; f(x) = ρ
ϵ
for x ∈ (x∗, x∗ + ϵ); and f(x) = 1−ρ

1−x∗−ϵ for

42Technically, this is an application of Lemma 11.
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x ∈ [x∗ + ϵ, 1], for x∗, ρ ∈ (0, 1), and ϵ > 0 small enough. Let L∗ be such that y(L∗) = x∗

and L∗∗ be such that y(L∗∗) = x∗ + ϵ. For L ≤ L∗, y(L) is constant, hence so is m(L), and

L 7→ p(L,m(L)) is decreasing. As in Proposition 2, we can show that L 7→ p(L,m(L)) is

decreasing in L under a uniform density, which implies that L 7→ p(L,m(L)) is decreasing for

L ≥ L∗∗. For L ∈ (L∗, L∗∗), it can be shown that L 7→ p(L,m(L)) is strictly increasing, with

positive right-derivative at L∗, if ϵ is small enough. In addition, taking ϵ small enough and

ρ ≥ 1
2
close enough to 1 makes m(L∗) arbitrarily close to y(L∗), so p(L∗,m(L∗)) can be made

arbitrarily close to p(L∗, y(L∗)) = a−b
g−b , which is less than 2(a−b)

2(a−b)+(g−a) = limL→∞ p(L,m(L))

(as shown in Proposition 10). ■

Proposition 12. There exist λ, λ′, h, s, a, γ, f , ϵ ∈ (0, 1] and L∗ > 0 such that an

equilibrium of the following form exists: whenever L = L∗, the organization stops experi-

menting with probability ϵ, and whenever L ̸= L∗, the organization continues experimenting

with probability one.

Proof of Proposition 12. For convenience, we multiply all the value functions in this

proof by γ. Let V ϵ(x, L) denote the value function of agent x given that the state is L

and the behavior on the equilibrium path is as described in the Proposition. Note that

V 0(x, L) = V (x, L).

Assume that f satisfies the conditions laid out in Lemma 8. Because y 7→ V (y) is

smoothly increasing, it follows that L 7→ V 0(m(L), L) is uniquely minimized at L∗, with a

kink at L∗, positive right-derivative at L∗, and lower value at L∗ than in the limit as L→∞.

Note that both V 0(m(L), L) and the density f constructed in the proof of Lemma 8 are

independent of s. Then we can choose s such that V 0(m(L∗), L∗) = s.

Because L∗ is the unique minimizer of L 7→ V 0(m(L), L), V 0(m(L), L) > s for all L ̸= L∗.

We aim to show that the conditions V ϵ(m(L∗), L∗) = s and V ϵ(m(L), L) ≥ s for all L ̸= L∗

still hold for ϵ > 0 small enough.

As in the proof of Proposition 10, we will want to write the difference between V ϵ(m(L), L)

and V 0(m(L), L) recursively. Note that the paths of play underlying these value functions

differ only when the state hits L∗ and the ϵ-probability event of m(L∗) stopping is triggered

in the former path. Then, for any L, there is some ρ(L, ϵ) ∈ (0, 1) such that

V 0(m(L), L)− V ϵ(m(L), L) = ρ(L, ϵ)
(
V 0(m(L), L∗)− s

)
. (19)

Here ρ(L, ϵ) is the expected time (discounted and weighted by probability, based on m(L)’s

beliefs) that the organization will devote to the safe policy in the conjectured equilibrium

with stopping at L∗.43 Formally, ρ(L, ϵ) =
∫∞
0
γe−γtPrϵm(L)(safe policy used at t)dt.

43Again, this is an application of Lemma 11.
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Next, we argue that ρ(L, ϵ) converges to 0 uniformly as a function of L when ϵ → 0.

That is, denoting ρ(ϵ) = ρ(·, ϵ), we want to show ∥ρ(ϵ)||∞ −−→
ϵ→0

0.

For the path of play underlying the value function V 0 (that is, when no agent ever

stops experimenting), let Nt,L be a random variable equal to the number of times t′ ≤ t

for which Lt′ = L∗, according to m(L)’s beliefs. Clearly, Prϵm(L)(safe policy used at t) =

E
(
1− (1− ϵ)Nt,L

)
≤ ϵE(Nt,L). (E(Nt,L) is finite, and in fact bounded by a linear function

of t, since any two consecutive times t′, t′′ for which Lt′ = Lt′′ = L∗ must differ by at least
ln(λ)−ln(λ′)

λ−λ′ .) must Denoting ρ̃(L) =
∫∞
0
γe−γtE(Nt,L)dt, then, ρ̃(L) is a bounded function,

and ρ(L, ϵ) ≤ ϵρ̃(L), which yields the result.

We are now ready to show that, if ϵ > 0 is small enough, then V ϵ(m(L), L) ≥ s for all

L, with equality at L∗. The case L = L∗ is trivial by Equation 19. The case L < L∗ is also

straightforward: since V 0(m(L), L∗) < V 0(m(L), L), Equation 19 yields

V ϵ(m(L), L) = V 0(m(L), L)− ρ(L, ϵ)
(
V 0(m(L), L∗)− s

)
≥ (1− ρ(L, ϵ))V 0(m(L), L) + ρ(L, ϵ)s > s.

Consider now the case L > L∗. Because V 0(m(L∗), L∗) < V 0(m(L), L) for all L > L∗;

V 0(m(L∗), L∗) < limL→∞ V 0(m(L), L); and ∂+V 0(m(L),L)
∂L

|L=L∗ > 0, there are constants k1 >

0, k2 > s such that V 0(m(L), L) ≥ min(s + k1(L − L∗), k2). Indeed, we can take k1 =
1
2
∂+V 0(m(L),L)

∂L
|L=L∗ , a radius δ > 0 such that V 0(m(L), L) ≥ s+k1(L−L∗) for L ∈ [L∗, L∗+δ),

and k2 = infL≥L∗+δ V
0(m(L), L).

Note that V 0(m(L), L∗) ≤ g. Take ϵ1 small enough that, if ϵ < ϵ1, then k1 > ∥ρ(ϵ)|| sup ∂V 0(x,L′)
∂L′ .

Then, by Equation 19, V ϵ(m(L), L) > s for all L ∈ (L∗, L∗ + δ). Take ϵ2 small enough that,

if ϵ < ϵ2, then k2 − ∥ρ(ϵ)||∞(g − s) > s. Then, by Equation 19, V ϵ(m(L), L) > s for all

L ≥ L∗ + δ. Thus, we can take any ϵ ≤ min(ϵ1, ϵ2). ■

Proof of Proposition 11. Take the equilibrium constructed in Proposition 12, and

assume that L0 > L∗.44 Let Pϑ(L0) be the probability that, conditional on starting at L0

and the policy type being ϑ ∈ {G,B}, the organization stops experimenting at any time

t < ∞. We will show that PG(L0) > PB(L0) for L0 large enough, by proving a stronger

result: there is C > 0 such that PG(L0) ≥ C > 0 for all L0 > L∗, but limL0→∞ PB(L0) = 0.

Let Qϑ(L0, L
∗) denote the probability that there is a t < ∞ such that Lt ≤ L∗ (i.e.,

the probability that Lt ever crosses to the left of L∗) when ϑ = G,B. We claim that

QG(L0, L
∗) = 1 for all L0 > L∗ but limL0→∞QB(L0, L

∗) = 0.

Let l(k, t) = lnL(k, t) = k(ln(λ′)− ln(λ)) + (λ− λ′)t. Let l0 = ln(L0).

44Though our definition of Lt requires that L0 = 1, starting the game in state (1, f) (L0 = 1, distribution
of beliefs f) is equivalent to starting in state (L, f̃) for a modified density f̃ , defined such that, if the
distribution of priors is given by f̃ , then the distribution of posteriors in state L is given by f .
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When ϑ = G, we then have lt = l0 + (λ − λ′)t − [ln(λ)− ln(λ′)]N(t), where (N(t))t is

a Poisson process with rate λ, that is, N(t) ∼ P (λt). This can be written as a random

walk: for integer values of t, lt − l0 =
∑t

i=0 Si, where Si = λ − λ′ − [ln(λ)− ln(λ′)]Ni, and

Ni ∼ P (λ) are iid. Note that E[Si] = λ− λ′ − λ (ln(λ)− ln(λ′)) < 0.45 Then, by the strong

law of large numbers, we have lt
t
−−−→
t→∞

E[Si] < 0 a.s., whence lt −−−→
t→∞

−∞ a.s., implying the

first claim.

On the other hand, when ϑ = B, we have (lt)t = l0 + (λ − λ′)t − [ln(λ) − ln(λ′)]N(t),

where (N(t))t is a Poisson process with rate λ′. This can be written as a random walk with

positive drift: lt − l0 =
∑t

i=0 Si, where Si = λ − λ′ − [ln(λ)− ln(λ)]Ni, Ni ∼ P (λ′), and

E[Si] = λ − λ′ − λ′ (ln(λ)− ln(λ′)) > 0. As above, by the strong law of large numbers, we

have lt −−−→
t→∞

∞ a.s.

Note that QB

(
L, λ

′

λ
L
)
= q is independent of L because (lt)t follows a random walk.

Suppose for the sake of contradiction that lim supL→∞QB(L,L
∗) > 0. We claim that this

implies q = 1. Suppose instead that q < 1. Fix J ∈ N. Then, for L0 large enough that(
λ′

λ

)2J+1
L0 > L∗,

QB(L0, L
∗) ≤

J∏
j=0

QB

((
λ′

λ

)2j

L0,

(
λ′

λ

)2j+1

L0

)
= qJ+1

This implies that, whenever lim supL→∞QB(L,L
∗) > 0, we have q = 1, as the above

equation must hold for arbitrarily large J . Hence (lt)t is recurrent, that is, it visits the

neighborhood of every l ∈ R infinitely often (Durrett 2010: pp. 190–201). However, this

contradicts the fact that limt→∞ lt =∞ a.s. Therefore, lim supL→∞QB(L,L
∗) = 0.

This implies that PB(L0) ≤ QB(L0, L
∗)→ 0 as L0 →∞. On the other hand, PG(L0) ≥

QG(L0, L
∗) inf

L∈((λ′
λ )L∗,L∗] PG(L) > 0. The first inequality holds for the following reason.

With probability 1, if Lt = L∗ for some t, there must be t′ < t such that Lt′ ∈
(
λ′

λ
L∗, L∗),

which happens with probability QG(L0, L
∗). Conditional on this event, the probability of

hitting state L∗ in the continuation is PG(Lt′). Note that infL∈((λ′
λ )L∗,L∗] PG(L) > 0 because

it is equal to PG
((

λ′

λ

)
L∗). ■

B.2 General Voting Rules

We assume throughout the paper that the median member of the organization is pivotal.

Our analysis, however, extends to other voting rules under which the agent at the z-th

45Let λ
λ′ = 1 + x. Then E[Si] = λ′(x − (1 + x) ln(1 + x)), where x − (1 + x) ln(1 + x) is negative for all

x > 0. Similarly, λ− λ′− λ′ (ln(λ)− ln(λ′)) = λ′(x− ln(1+ x)), where x− ln(1+ x) is positive for all x > 0.
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percentile is pivotal. (Formally, the pivotal agent zt at time t is such that
∫ 1
zt
f(x)dx∫ 1

yt
f(x)dx

= z.)

Clearly, zt and pt(zt) are increasing in z for all t. To illustrate, assume that f is uniform.

Then, as t→∞, the posterior belief of the pivotal agent converges to a
za+(1−z)g rather than

2a
g+a

. Clearly, z > 1
2
makes over-experimentation more likely and vice versa.

More generally, everything goes through if the z-th percentile agent is pivotal when the

risky policy is in use, and the z′-th percentile agent is pivotal when the safe policy is in use,

so long as z ≥ z′. In particular, this allows us to model supermajority requirements, by

taking z = q, z′ = 1− q for q > 1
2
. When the risky policy is in use, stringent supermajority

requirements are functionally equivalent to more optimistic leadership of the organization,

and make it easier to sustain excessive experimentation.

B.3 No Re-entry

Our assumption of free entry and exit has two purposes: it captures the notion of fluid

membership, a core premise of our argument, in its most ideal form; and it keeps the model—

in particular, membership decisions—simple. But for many organizations it is not descrip-

tively accurate: many firms, and some political parties, would balk at rehiring someone who

quit or was fired.

As an alternative, we can consider the case of no re-entry: agents are free to quit, but

cannot come back if they do. The model is otherwise identical. The following Proposition

summarizes our results for this case.

Proposition 13. If perpetual experimentation is an equilibrium in the model with no re-

entry, it is an equilibrium in the baseline model. Perpetual experimentation is still the unique

equilibrium under no re-entry for some parameter values—in particular, if f decreases no

faster than a power law,46 and a is close enough to s.

In other words, in the case of no re-entry, perpetual experimentation obtains only under

more stringent parameter conditions than in the baseline model. The logic is as follows:

the value functions V (x), VT (x) take lower values than in the baseline model, because the

agent’s option value from experimentation is lower when she cannot reenter after a success.

In addition, agents exit later than in the baseline model, because remaining a member now

confers some option value. As a result, yt, and hence mt, are lower than in the baseline

model. Both forces make the pivotal agent less willing to experiment.

And yet perpetual experimentation is again the unique equilibrium under familiar con-

ditions: if exit is tempting enough and the number of initial optimists is not too small.

46That is, if f MLRP-dominates fω for some ω > 0.
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The proof also yields explicit parameter conditions analogous to those in Proposition 2. (In

this variant, there is also a parameter region with positive measure in which equilibria with

perpetual and finite experimentation coexist. The reason is that a finite stopping time en-

courages pessimists to hold off quitting until the safe policy arrives, thus creating its own

base of support.)

Proof of Proposition 13.

The first part is trivial. To prove the second part requires a full solution for this variant

of the model.

We first solve for exit decisions. The agent’s problem of choosing an exit time, if experi-

mentation is perpetual (or too prolonged for the agent to consider staying until it ends), is a

single-agent bandit problem in which exit stops experimentation (as far as she is concerned).

The problem is well-known in the literature. Briefly, if the agent’s current belief is z and she

is indifferent, her marginal payoff from staying in the organization for another instant is

zg − a+ z
λ(g − a)

γ
.

yg − a is her net flow payoff from the change, λ her learning rate, and (g−a)
γ

her net gain

from learning that the risky policy is good. Then her belief must be a

g+
λ(g−a)

γ

. Using Lemma

1, we obtain

t(y) =
1

λ
ln

(
g − a
a

γ + λ

γ

y

1− y

)
.

Assume that experimentation stops at time T in equilibrium. An agent y’s utility if she

stays until T is

V stay
T (y) = y

∫ T

0

ge−γtdt+ y(1− e−λT )
∫ ∞

T

ge−γtdt+ (1− y + ye−λT )

∫ ∞

T

se−γtdt

=
yg

γ
+ (1− y) s

γ
e−γT − yg − ys

γ
e−(λ+γ)T .

If she quits, it is optimal to quit at time t(y). Then she receives

V (y) = y

∫ t(y)

0

ge−γtdt+ y(1− e−λt(y))
∫ ∞

t(y)

ge−γtdt+ (1− y + ye−λt(y))

∫ ∞

t(y)

ae−γtdt

=
yg

γ
+ (1− y)a

γ
e−γt(y) − yg − ya

γ
e−(λ+γ)t(y)

=
yg

γ
+

(1− y)a
γ

λ

γ + λ

(
a

g − a
γ

γ + λ

1− y
y

) γ
λ

.
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Note that this is the agent’s value function regardless of T , so long as it is optimal to exit

before T . In particular, V (y) is the agent’s value function under perpetual experimentation.

It is easy to show, as in Lemma 2, that V stay
T (y) is single-peaked in T , with a peak

T ∗(y) < t(y). In addition, V stay
t(y) (y) > V (y). Then there is T̂ (y) > t(y) such that the agent

leaves (at time t(y)) if T ≥ T̂ (y), and stays until T otherwise. In fact, because any agent y’s

posterior is the same at time t(y), we must have T̂ (y) = t(y)+T0 for a fixed T0 > 0. To find

T0, we can consider the case y = a

g+
λ(g−a)

γ

, for which t(y) = 0, and set V (y) = a
γ
, yielding

1

γ

ag

g + λ(g−a)
γ

+
(g − a)γ+λ

γ

g + λ(g−a)
γ

s

γ
e−γT0 − a

g + λ(g−a)
γ

g − s
γ

e−(λ+γ)T0 =
a

γ

⇐⇒ (g − a)sγ + λ

γ
e−γT0 − (g − s)ae−(λ+γ)T0 = (g − a)aλ

γ
.

The equation has a unique solution because the left-hand side is greater than the right for

T0 = 0, smaller for large T0, and decreasing everywhere.

Quitting decisions are then as follows. If perpetual experimentation is expected, each

agent x quits at time t(x), and the marginal agent at time t is yt such that pt(yt) =
a

g+
λ(g−a)

γ

.

The pivotal agent is mt, the median of [yt, 1]. If experimentation stops at time T , each agent

x ∈ [0, yT−T0) quits at time t(x), but agents in [yT−T0 , 1] never quit. The marginal agent,

yT,t, is then equal to max(yt, yT−T0). In particular, the marginal agent at time T is yT−T0 ,

and the pivotal agent is mT−T0 .

By the same argument as in Proposition 1, perpetual experimentation is an equilibrium

if and only if V (pt(mt)) ≥ s
γ
for all t. To guarantee that it is the unique equilibrium, we must

rule out equilibria with a finite stopping time T . Suppose one exists, and let T ′ be the next

(off-path) stopping time if experimentation does not stop at T . (T ′ = T if the set of stopping

times accumulates at T from above.) Then it must be that V (pt(mt)) ≥ s
γ
for all t ≤ T −T0,

andmT−T0 ’s continuation value at T (either V stay
T ′−T (pT (mT−T0)) if T

′−T ≤ t(pT (mT−T0))+T0,

or V (pT (mT−T0)) otherwise) must be weakly less than s
γ
.

In particular, if V (pT (mT−T0)) >
s
γ
, then this cannot be an equilibrium, as mT−T0 would

deviate and continue experimenting at T no matter what continuation she expects. (Recall

that V stay
T ′−T (pT (mT−T0)) is single-peaked in T ′, V stay

0 (pT (mT−T0)) =
s
γ
, and V stay

T ′−T (pT (mT−T0)) =

V (pT (mT−T0)) at the switching point, so V (pT (mT−T0)) >
s
γ
implies V stay

T ′−T (pT (mT−T0)) >
s
γ

for all T ′ − T ∈ (0, t(pT (mT−T0)) + T0]. If T
′ = T , then Condition (ii) applies.)

Thus, V (pT (mT−T0)) >
s
γ
for all T is a sufficient condition for perpetual experimentation

to be the unique equilibrium.

From Equation 1, yt =
a

a+(g−a)λ+γ
γ
e−λt

for all t. Suppose f = fω as in Proposition 2. Then,
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as in Claim 1,

mt = 1− η + ηyt =
a+ (1− η)(g − a)λ+γ

γ
e−λt

a+ (g − a)λ+γ
γ
e−λt

=⇒ pt(mt) =
a+ (1− η)(g − a)λ+γ

γ
e−λt

a+ (1− η)(g − a)λ+γ
γ
e−λt + η(g − a)λ+γ

γ

↘ a

a+ η(g − a)λ+γ
γ

pt+T0(mt) =
a+ (1− η)(g − a)λ+γ

γ
e−λt

a+ (1− η)(g − a)λ+γ
γ
e−λt + η(g − a)λ+γ

γ
eλT0

↘ a

a+ η(g − a)λ+γ
γ
eλT0

.

Thus, for this family of prior densities, V

(
a

a+η(g−a)λ+γ
γ

)
> s

γ
guarantees that perpetual

experimentation is an equilibrium; V

(
a

a+η(g−a)λ+γ
γ
eλT0

)
> s

γ
guarantees that it is the only

one. The same argument as in Proposition 3 implies that these are also sufficient conditions

for any f that MLRP-dominates fω. We can substitute back into our expression for V to

obtain a transparent condition on the parameters a, s, λ, h, γ.

Finally, we will show that if f = fω, and leaving all parameters but a fixed, if a < s is

close enough to s, then V

(
a

a+η(g−a)λ+γ
γ
eλT0

)
> s

γ
.

It is enough to prove this for the case a = s; our claim then follows by continuity of V and

T0. Note that, if a = s, then T0 = 0.47 Then we need to verify that γV

(
s

s+η(g−s)λ+γ
γ

)
> s.

Plugging in this belief and a = s into our expression for V , we obtain

γV

(
s

s+ η(g − s)λ+γ
γ

)
=

sg

s+ η(g − s)λ+γ
γ

+ s
η(g − s)λ

γ

s+ η(g − s)λ+γ
γ

η
γ
λ .

This is greater than s if and only if

g

s+ η(g − s)λ+γ
γ

+
η(g − s)λ

γ

s+ η(g − s)λ+γ
γ

η
γ
λ > 1

⇐⇒ 1 +
λ

γ
η

γ+λ
λ > η

λ+ γ

γ
.

This inequality is of the form 1 + xa+1

a
− xa+1

a
> 0 for some a > 0. It holds for all x ∈ [0, 1),

as it holds at x = 0, becomes an equality at x = 1, and its derivative is negative for all

x ∈ (0, 1). This finishes the proof as η ∈ (0, 1) by definition.

■
47Intuitively, in this case an agent gains nothing from waiting beyond t(y), as a switch to the safe policy

is no better than quitting.
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B.4 Size-Dependent Payoffs

In some settings the payoffs that a policy generates may depend on the organization’s

size. In this section we discuss how different operationalizations of this assumption affect our

results. We show that our main result is robust to this extension, and discuss how different

kinds of size-dependent payoffs may exacerbate or prevent over-experimentation.

We consider three types of size-dependent payoffs. For the first two, we suppose that

when the set of members of the organization has measure µ, the safe policy yields a flow

payoff z(µ)s, the good risky policy yields instantaneous payoffs of size z(µ)h generated at

rate λ, and the bad risky policy yields zero. We assume that z(1) = 1, so that g = λh, s and

0 are the expected flow payoffs from the good risky policy, the safe policy and the bad risky

policy respectively when all agents are in the organization. For the first type of payoffs we

consider, z(µ) is increasing in µ, so there are economies of scale. For the second type, z(µ)

is decreasing in µ, so there is a congestion effect.

In general, the effect of size-dependent payoffs on the level of experimentation is am-

biguous because of two countervailing effects. On the one hand, when there is a congestion

effect, as the organization contracts, higher flow payoffs increase the benefits from experi-

mentation, which makes experimentation more attractive.48 We call this the payoff effect.

On the other hand, because increasing flow payoffs provide incentives for agents to stay in

the organization, the organization contracts at a lower speed, which begets an ex ante less

optimistic pivotal agent. We call this the control effect. With economies of scale, both effects

are reversed.

With economies of scale, the membership stage of the game may have multiple equilibria,

since the more members there are, the higher their payoffs. For simplicity, we assume

parameters such that the set of members is uniquely determined.49 It is sufficient to assume

that z does not increase too fast.

The following Proposition presents our first result.

Proposition 14. Suppose that f = fω.
50 Let z = limµ→0 z(µ), and let Vz,t(pt(mt)) denote

the utility of the pivotal agent at time t if she expects experimentation to continue forever.

If

η
γ
λa

λ

γ + λ
+
a

η

γ

γ + λ
> g

λ

γ + λ
+ a

γ

γ + λ

then limt→∞ Vz,t(pt(mt)) is strictly increasing in z for all z ∈ [a,∞). In this case, perpetual

48While the safe policy could also yield high payoffs when the organization is small, all agents will enter
as soon as the safe policy is implemented, so these high payoffs can never be captured.

49Formally, we require that the equation yt

yt+(1−yt)eλt = a
z(1−F (yt))g

has a unique fixed point yt for all t ≥ 0.
50Recall that fω(x) is a density with support [0, 1] equal to (ω + 1)(1− x)ω for x ∈ [0, 1], and η = 2

−1
ω+1 .
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experimentation obtains for a greater set of parameter values with a congestion effect and

for a smaller set of parameter values with economies of scale, relative to the baseline model.

Conversely, if the reverse inequality holds strictly, then limt→∞ Vz,t(pt(mt)) is strictly

decreasing in z for all z ∈ [a,∞).

The intuition for the Proposition is as follows. By the same argument as in the baseline

model a sufficient condition for perpetual experimentation is that Vz,t(pt(mt)) ≥ s
γ
for all

t. While it is difficult to calculate Vz,t(pt(mt)) explicitly for all t, calculating its limit as

t → ∞ is tractable and often allows us to determine whether the needed condition holds

for all t. We show that the limit depends only on z rather than the entire function z.

Moreover, it is a hyperbola in z, so it is either increasing or decreasing in z everywhere. In

the first case, size-dependent payoffs affect the equilibrium mainly through the payoff effect,

so experimentation is more attractive with a congestion effect and less so with economies

of scale. In the second case, the control effect dominates, and the comparative statics are

reversed. These statements are precise as t → ∞, conditional on the risky policy having

reen used for a long time. We can show that when congestion effects make experimentation

more likely in the limit, they do so for all t.51

The inequality in the Proposition determines which case we are in. Because g > η
γ
λa

(note that η ∈ (0, 1)) and a
η
> a, if λ is large enough relative to γ, then over-experimentation

is more likely with economies of scale and less likely with a congestion effect, relative to the

baseline model. The opposite happens if γ is large relative to λ. The logic is that, under

economies of scale, the pivotal decision-maker is very optimistic about the risky policy but

expects to receive a low payoff from the first success. If λ
γ
is large, so that successes are

frequent or the agent is patient, the first success is expected to be one of many, so the cost of

a small first success is minor—whereas, if λ
γ
is small, further successes are heavily discounted.

Conversely, with a congestion effect, for large t the pivotal decision-maker is almost certain

that the risky policy is bad but believes that, with a low probability, it will net a very large

payoff before she leaves.

The third way in which we operationalize size-dependent payoffs deals with changes to

the learning rate rather than to flow payoffs. Here we suppose that when the organization

is of size µ, the good risky policy generates successes at a rate λµ. Each success pays a

total of h, which is split evenly among members, so that each member gets h
µ
. All other

payoffs are the same as in the baseline model. An example that fits this setting is a group

of researchers trying to find a breakthrough. If there are fewer researchers, breakthroughs

are just as valuable but happen less often. When f is uniform, and denoting by Vt the

51When congestion effects make experimentation less likely in the limit, they may not do so for all t.
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continuation utility under perpetual experimentation starting at time t,52

γ inf Vt(pt(mt)) = γ lim
t→∞

Vt

(
2a

g + a

)
=

2ga

g + a
.

In other words, the asymptotic median’s expected payoff is simply the flow payoff of the

risky policy; the option value of experimentation vanishes as the learning rate goes to zero.

It follows that perpetual experimentation is less likely to obtain here than in the baseline

model, but is still the unique outcome if 2ga
g+a

> s. Note that, in this case, additional members

increase the learning rate—a positive externality on other players which is not internalized.

Hence, there is free-riding as in Keller et al. (2005). It is simultaneously possible that too

few agents partake in experimentation—given that the risky policy is in use—and that the

risky policy is used for too long.

Proof of Proposition 14. Fix an equilibrium candidate with perpetual experimenta-

tion. Let µt be the size of the organization at time t on the equilibrium path. Let zt = z(µt).

The first success that happens at time t yields a per-capita payoff zth, and all further suc-

cesses pay h (because all agents enter after the first success).

Recall that, if the risky policy is good, a success arrives by time t with probability 1−e−λt.
An agent x with belief x who expects perpetual experimentation has utility

V(zt)t(x) =x

∫ t∗

0

e−γt
((
1− e−λt

)
g + e−λtztg

)
dt+

x

∫ ∞

t∗
e−γt

((
1− e−λt

)
g + e−λta

)
dt+ (1− x)

∫ ∞

t∗
e−γtadt,

where t∗ is the time at which the agent leaves, that is, when her posterior reaches a
ztg

. In

particular, if zt = z for all t, then the above expression equals

Vg(x) = x

(
g

γ
− g

γ + λ
+
zg
(
1− e−(γ+λ)t∗

)
γ + λ

+
e−(γ+λ)t∗a

γ + λ
− e−γt

∗
a

γ

)
+
e−γt

∗
a

γ
.

Suppose that f = fω, as in Proposition 2. By the same arguments as in that Proposition,

if yt satisfies pt(yt) =
a
zg

for all t, then pt(mt) ↘ a
η(zg−a)+a as t → ∞, and, by Lemma 1, we

have t∗ = − ln(η)
λ

.53 Then

Vz

(
a

η(zg − a) + a

)
=

a

ηzg + (1− η)a

g

γ
− g

γ + λ
+
zg
(
1− η γ+λ

λ

)
γ + λ

+
η

γ+λ
λ a

γ + λ
− η

γ
λa

γ

+
η

γ
λa

γ

52Vt depends on t because the higher t is, the smaller the organization and the lower the learning rate.
53Note that this is the same t∗ as in the baseline model.
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Since this is a hyperbola in z, it is either increasing in z for all z > 0 or decreasing in z for

all z > 0. In particular, when the congestion effect is maximal, that is, as z →∞, we have

lim
z→∞

γVz

(
a

η(zg − a) + a

)
=
a

η

(
1− η

γ+λ
λ

) γ

γ + λ
+ η

γ
λa =

a

η

γ

γ + λ
+ η

γ
λa

λ

γ + λ
.

On the other hand, when the economies of scale are maximal, that is, as z → a
g
,54

lim
z→a

g

γVz

(
a

η(zg − a) + a

)
= γ

g

γ
− g

γ + λ
+
a
(
1− η γ+λ

λ

)
γ + λ

+
η

γ+λ
λ a

γ + λ

 = g
λ

γ + λ
+ a

γ

γ + λ

Thus a
η

γ
γ+λ

+ η
γ
λa λ

γ+λ
> g λ

γ+λ
+ a γ

γ+λ
iff limz→∞ Vz

(
a

η(zg−a)+a

)
> limz→a

g
Vz

(
a

η(zg−a)+a

)
.

Because Vz

(
a

η(zg−a)+a

)
is either increasing in z for all z > 0 or decreasing in z for all z > 0,

this condition implies that Vz

(
a

η(zg−a)+a

)
is increasing in z for all z > 0. Analogously, f the

inequality is reversed, Vz

(
a

η(zg−a)+a

)
is decreasing in z.

In addition, note that if Vz

(
a

η(zg−a)+a

)
is increasing in z, then we can guarantee that,

with a congestion effect,

V(zτ )τ≥t
(pt(mt)) > Vzt (pt(mt)) > Vzt

(
a

η(ztg − a) + a

)
> V

(
a

η(g − a) + a

)
The first inequality follows because zτ 7→ Vzt,...,zτ ,... (x) is increasing, with a congestion

effect µ 7→ z(µ) is decreasing and t 7→ µt is decreasing, so t 7→ zt = z(µt) is increasing. The

second inequality follows because x 7→ Vzt(x) is strictly increasing in x and pt(mt)↘ a
η(zg−a)+a

as t→∞ if the function z(µ) is constantly equal to z . The last inequality follows because

z 7→ Vz

(
a

η(zg−a)+a

)
is increasing in z, and with a congestion effect zt = z(µt) > z(1) = 1.

Thus the condition to obtain perpetual experimentation is slacker with a congestion

effect than in the baseline model at every t, not just in the limit. By the same argument, the

condition for perpetual experimentation is tighter for all t under economies of scale.55 ■

54If z < a
g , we enter a degenerate case in which the organization becomes empty immediately.

55If z 7→ Vz

(
a

η(zg−a)+a

)
is decreasing, it is harder to give a clean comparison with the baseline model

because the tightest case may be away from the limit: for example, with economies of scale, the pivotal
agent for large t is more likely to want to experiment as z is low, but a pivotal agent at an early time may
be dissuaded by the decreasing path of (zt)t.
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B.5 Continuous (But Non-Tradable) Membership

As a stepping stone between our baseline model and our model with tradable shares from

Section 4.2, we can consider a model in which membership is a continuous choice and agents

are risk-averse, as in Section 4.2, but membership only confers exposure to current payoffs,

and not property rights over future payoffs, as in the baseline model. In this model, perpetual

experimentation is possible, and if anything made more likely by selection on the intensive

margin. The structure of property rights is thus the key factor limiting experimentation in

Section 4.2.

Formally, assume that, at each t, each agent x chooses a participation intensity qt ≥ 0.

For a worker, qt represents hours worked; in the example of a dairy cooperative, qt represents

how many cows the agent puts to work within the cooperative. The agent then receives a

flow payoff (s−a)qt if the safe policy is being used, −aqt if the bad risky policy is being used,

and −aqt plus lump sums of size hqt at rate λ if the good risky policy is being used. Crucially,

if an agent lowers or increases qt, her exposure to the organization’s policy changes but she

does not derive any capital gains or losses. And, as in Section 4.2, we will assume that the

organization is able to “smooth out” payoffs from the risky policy after the first success,

and instead offer a guaranteed flow payoff g per unit of input. As in the baseline model,

the organization’s size adjusts to accommodate total share demands, with one exception: we

will assume that the organization has a maximum capacity K, which becomes binding only

after a success or a switch to the safe policy. In these scenarios, in which all agents want

infinite participation, the capacity constraint will restrict them to the choice qt = K. We

assume K to be high enough that, in all other scenarios, the capacity constraint does not

bind.

Agents differ in two dimensions: their prior beliefs x are distributed according to a density

f with support [0, 1], and their initial wealth levelsW0 are distributed according to a density

w with support [0,+∞). The two dimensions are independently distributed.56 As in Section

4.2, they are risk-averse, with utility function u(c) = c1−θ

1−θ , and can lend and borrow at rate

γ. Again, we assume θ ∈ (0, 1].

Proposition 15. Holding all parameters but a fixed, if a < s is close enough to s, there is

perpetual experimentation.

Proof. Much of our analysis from Section 4.2 carries over: we can think of this model

as one with tradable shares, but with a constant share price ρt =
a
γ
and no market-clearing

56The case in which all agents have identical initial wealth is substantively similar but poses some technical
problems: it is possible there for all agents to impoverish themselves enough that no one wants to hold any
shares, and so the pivotal agent is ill-defined, even though many agents want experimentation to continue.
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constraint. The instantaneous cost of increasing payoffs by 1 in the event of a success is

ξt =
γρt
h
≡ a

h
. The other difference is that, after a success at time t, the agent’s wealth

effectively goes not from Wt(W,x) to Wt(W,x) + qt(W,x)(h + ρ − ρt) but to Wt(W,x) +

qt(W,x)h +K (g−a)
γ

. That is, instead of capital gains, the agent receives a fixed lump sum,

and consumes γWt(W,x) + qt(W,x)γh+K(g − a) forever after. Similarly, if the safe policy

is adopted at time t, the agent consumes γWt(W,x) + qt(W,x)γh+K(s− a) forever after.
We first provide a time limit by which an agent stops participating in the organization.

Lemma 9. Assume an agent (W,x) stops holding shares at time t(W,x). Then t(W,x) ≤
t(x) from Lemma 1 for all W . In particular, pt(W,x)g ≥ a for all W , x. Moreover,

t(W,x) −−−−→
W→∞

t(x).

Proof. Formally, let t(W,x) = sup{t : qt(W,x) > 0}. We first argue that t(W,x) is

finite for all x < 1. Suppose instead that qt(W,x) > 0 for arbitrarily high t. For all t > t(x),

as pt(x) <
a
g
, holding shares can only make sense if consumption is higher in the absence

of a success. Denoting by ct(W,x) the consumption at time t of an agent with initial (not

current) wealth W and prior x, by Equation 9,

ct(W,x)

γWt(W,x) + qt(W,x)γh+K(g − a)
=

ct(W,x)

ct(W,x; succ)
=

[
a

gpt(x)

] 1
θ

> 1.

Then, for all t > t(x) such that qt(W,x) > 0, Equation 8 implies that ct(W,x) is increasing

in t. Now suppose share demand is positive up to t′, and then zero in some interval t′′, and

then positive again. By continuity, ct′(W,x) > ct′(W,x; succ), so ct(W,x) is increasing in t

at t′. Moreover, because ct′(W,x) > ct′(W,x; succ) > γWt′(W,x), Wt(W,x) is decreasing in

t at t′, and hence ct(W,x; succ) is decreasing in t at t′, so the gap ct(W,x) − ct(W,x; succ)
is increasing. Extending this argument carefully, we can show that ct(W,x) increases over

all of [t′, t′′]. To summarize, there is t0 such that ct(W,x) is increasing for all t ≥ t0, and

ct0(W,x) > γWt0(W,x). This violates the agent’s budget constraint, a contradiction.

Now knowing that t(W,x) is finite, note that, if t(W,x) > t(x), then positive share

demands right before t(W,x) imply ct(W,x)(W,x) > ct(W,x)(W,x; succ) > γWt(W,x)(W,x). The

same argument as above shows that ct(W,x) increases for all t > t(W,x), violating the

budget constraint.

Finally, we can normalize the problem of an agent with high W as that of an agent with

W = 1 but for whom K is low. For K = 0, the agent stops holding shares at t(x), since after

she stops holding shares she will not receive any windfalls, and hence her consumption path

must be constantly equal to γWt(x)(W,x) whether a success occurs or not, so ct(W,x)
ct(W,x;succ)

= 1

implies pt(x) =
a
g
. For very small K the result follows by a continuity argument. ■
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Hence the distribution of posterior beliefs is always contained in
[
a
g
, 1
]
, as in the baseline

model. Moreover, because t(W,x) is close to t(x) for highW , the organization is never empty.

Let V (y,W ) be the value function of an agent with current wealth W and current belief y,

if she expects perpetual experimentation. Then it is enough to show that there is a < s

such that, if a ∈ [a, s], then V (a
g
,W ) is greater than the utility of consuming γW +K(s−a)

forever (namely 1
γ
(γW+K(s−a))1−θ

1−θ ), for all W .

We can bound V (a
g
,W ) below by noting that the agent could (suboptimally) consume

γW forever in the absence of a success, and hold no shares, and consume γW + K(g − a)
forever after a success. Thus V (a

g
,W ) ≥ 1

γ
(γW )1−θ

1−θ + a
g

λ
γ(γ+λ)

(γW+K(g−a))1−θ−(γW )1−θ

1−θ . It can be

shown that this expression is greater than 1
γ
(γW+K(s−a))1−θ

1−θ for allW if it is greater forW = 0,

i.e., it is sufficient to choose a close enough to s that a
g

λ
γ+λ

(K(g − a))1−θ > (K(s − a))1−θ.
The result follows. ■

B.6 A Model with Heterogeneous Preferences

Although we assume throughout the paper that the agents’ differing incentives to both

experiment and remain in the organization are the result of heterogeneous priors, similar

results arise in a model with common priors but (ex ante) heterogeneous payoffs from exper-

imentation. Formally, assume that all agents have a prior p0 that the risky policy is good,

and they are distributed according to a density f with support [0,+∞), where an agent h

receives a lump sum of size h each time the risky policy succeeds. As in the baseline model,

the safe policy yields s for everyone, and the outside option a for everyone.

An agent h now wants to be a member at time t if and only if ptλh = p0e−λt

p0e−λt+1−p0λh ≥ a,

so the marginal agent at time t is now ht =
a
λ

(
1 + 1−p0

p0
eλt
)
. The pivotal agent mt satisfies∫ mt

ht
f(h)dh =

∫∞
mt
f(h)dh. We can show that Proposition 1 holds, replacing V (pt(mt))

with V (pt,mt), i.e., the value function of an agent with belief pt and prize size mt under

perpetual experimentation. Moreover, V (pt,mt) is greater than s
γ
if a is close enough to

s and f does not decrease too steeply. For instance, if f(x) ∝ 1
x2
, then mt ≡ 2ht, and

V (pt,mt) ≥ 1
γ
λptmt =

1
γ
2λptht = 2 a

γ
, so it is enough to take a > s

2
.

B.7 A Model with Unrestricted Policy Changes

In this Section we present a version of the model in which membership and policy strate-

gies are the primitives, and switching to the safe policy is reversible. We show that the

equilibrium membership strategies are as postulated in Section 2, and switches to the safe

policy are in fact permanent in every equilibrium. Hence our simplifying assumptions in the

22



main text are without loss of generality.

Definition of Equilibrium

We let πt− and πt+ denote the left and right limits of the policy path at time t respectively,

whenever the limits are well-defined. We require that πt, the current policy at time t, is

chosen by the decision-maker who is pivotal given the incumbent policy πt− . Similarly, πt+

is chosen by the decision-maker who is pivotal given πt. That is, for the policy to change

from π to π′ along the path of play, the decision-maker induced by π must be in favor of the

change.

We define L = eλt if there have been no successes and L = 0 otherwise. As in our model

with imperfectly informative news, L summarizes the informational state of the game. We

define a membership function β so that β(x, L, π) = 1 if agent x chooses to be a member given

information L and policy π, and β(x, L, π) = 0 otherwise. We define a policy correspondence

α so that α(L, π) is the set of policies that the median voter, m(L, π), is willing to choose.57

We emphasize that α(L, π) need not be the set of policies that the median voter finds

optimal in the sense of maximizing her utility given the behavior of the other agents—that

is, α(L, π) is not an equilibrium notion. Our notion of strategy profile summarizes the above

requirements:

Definition 2. A Markov strategy profile is given by a membership function β : [0, 1] ×
R≥0 × {0, 1} → {0, 1}, a policy correspondence α : R≥0 × {0, 1} → {{0}, {1}, {0, 1}}, and
a stochastic path of play consisting of information and policy paths (Lt, πt)t satisfying the

following:

(a) Conditional on the policy type ϑ, (Lt, πt)t≥0 is a progressively measurable Markov

process with paths that have left and right limits at every t ≥ 0, satisfying (L0, π0) =

(1, 1).

(b) Letting
(
k̃τ

)
τ
denote a Poisson process with rate λ or 0 if ϑ = G or B respectively;

letting
(
L̃τ

)
τ
be given by L̃τ = eλτ if k̃τ = 0 and L̃τ = 0 otherwise; and letting

n(t) =
∫ t
0
πt′dt

′ denote the amount of experimentation up to time t, we have Lt = L̃n(t).

(c) πt ∈ α(Lt, πt−) for all t ≥ 0.

(d) πt+ ∈ α(Lt, πt) for all t ≥ 0.

57α(L, π) can take the values {0}, {1} and {0, 1}. Defining α(L, π) in this way is convenient because some
paths of play cannot be easily described in terms of the instantaneous switching probabilities of individual
agents. α should be understood as a choice rule in the decision-theoretic sense.
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We define V (x, L, π) as the continuation utility of an agent with prior belief x given

information L and incumbent policy π. In other words, V (x, L, π) is the utility agent x

expects to get starting at time t0 when the state follows the process (Lt, πt)t≥t0 given that

(Lt0 , πt0) = (L, π).

Definition 3. An equilibrium σ is a strategy profile such that:

(i) β(x, L, π) = 1 if s+ π(p(L, x)g − s) > a and β(x, L, π) = 0 otherwise.

(ii) If V (m(L, π), L, π′) > V (m(L, π), L, 1− π′), then α(L, π) = {π′}.

Part (i) of the definition says that agents make membership decisions that maximize their

flow payoffs. Part (ii) says that the pivotal agent chooses her preferred policy based on her

expected utility, assuming that the equilibrium strategies are played in the continuation.

As in Section 2, an additional condition is needed to rule out undesirable equilibria that

arise when V (m(L, π)), L, 1) = V (m(L, π), L, 0) for the trivial reason that the continuation

is independent of m(L, π)’s actions. To eliminate such equilibria, we will consider short-

lived deviations optimal if they would be profitable when extended for a short amount of

time. To formalize this, we define V (x, L, π, ϵ) as x’s continuation utility under the following

assumptions: the state is (L, π) at time t0, the policy π is locked in for a length of time ϵ > 0

irrespective of the equilibrium path of play, and the equilibrium path of play continues at

time t0 + ϵ. We will impose the requirement that equilibria satisfy the following:

(iii) If V (m(L, π), L, 1) = V (m(L, π), L, 0) but V (m(L, π), L, π′, ϵ) − V (m(L, π), L, 1 −
π′, ϵ) > 0 for all ϵ > 0 small enough, then α(L, π) = {π′}.

Analysis

The results are structured as follows. Lemmas 10, 11 and 13 are technical statements.

Lemma 12 shows that agents strictly prefer the risky policy after a success. Proposition 16

shows that switches to the safe policy are permanent.

Lemma 10. For any policy path (πt)t with left and right-limits everywhere, there is another

policy path (π̂t)t such that π̂0 = π0, (π̂t)t is càdlàg for all t > 0, and (π̂t)t is equal to (πt)t

almost everywhere.58

Proof of Lemma 10.

Define π̂0 = π0 and π̂t = πt+ for all t > 0. Let T = R≥0 \ {t ≥ 0 : πt− = πt = πt+}.
Because (πt)t has left and right-limits everywhere, T must be countable—otherwise T would

58Hence it is payoff-equivalent to πt and generates the same learning path (Lt)t.
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have an accumulation point t0, and either the left-limit or right-limit of (πt)t at t0 would not

be well-defined. Then, since π̂t = πt for all t /∈ T , (π̂t)t and (πt)t only differ on a countable

set. Moreover, it is straightforward to show that, for all t > 0, π̂t− = πt− and π̂t+ = πt+ = π̂t,

so (π̂t)t is càdlàg. ■

Corollary 3. For any strategy profile (β, α, (Lt, πt)t|(L, π, ϑ)) the stochastic process (Lt, π̂t)t|(L, π, ϑ)
(where (π̂t)t is as in Lemma 10) has càdlàg paths, satisfies Conditions (a) and (b), and in-

duces a path of play that yields the same payoffs as the strategy.

Lemma 11 (Recursive Decomposition). Let Θ ⊆ Rn be a closed set, let (θt)t be a right-

continuous progressively measurable Markov process with support contained in Θ, let f be a

bounded function, and let

U(θ0) =

∫ ∞

0

e−γtEθ0 [f(θt)]dt.

Let Ψ be a closed subset of Θ and define a stochastic process (ψt)t with a co-domain

(Ψ ∪ {∅}) as follows: ψt = θ ∈ Ψ if there exists t′ ≤ t such that θt′ = θ and θt′′ /∈ Ψ for all

t′′ < t′. If this is not true for any θ ∈ Ψ, then ψt = ∅.59 Then

U(θ0) =

∫ ∞

0

e−γtEθ0
[
f(θt)1{ψt=∅}

]
dt+

∫
Ψ

U(θ)dP̃

where P̃ is defined as follows: Pψt is the probability measure on Ψ ∪ ∅ induced by ψt, and

P̃ = γ
∫∞
0
e−γtPψtdt.

Proof of Lemma 11.

U(θ0) =

∫ ∞

0

e−γtEθ0 [f(θt)]dt =∫ ∞

0

e−γtEθ0
[
f(θt)1{ψt=∅}

]
dt+

∫ ∞

0

e−γtEθ0
[
f(θt)1{ψt∈Ψ}

]
dt.

So it remains to show that∫
Ψ

U(θ)dP̃ =

∫ ∞

0

e−γtEθ0
[
f(θt)1{ψt∈Ψ}

]
dt.

Define a random variable ξ with co-domain (Ψ× [0,∞)) ∪ {∅} as follows: ξ = (θ, t) if

θt = θ ∈ Ψ and θt′ /∈ Ψ for all t′ < t. If this is not true for any θ ∈ Ψ and t ≥ 0, then

ξ = ∅.60 Let Pξ be the probability measure on (Ψ× [0,∞)) ∪ {∅} induced by ξ. Let θ(ξ)

59In other words, ψt takes the value of the first θ ∈ Ψ that (θt)t hits.
60In other words, ξ takes the value of the first θ ∈ Ψ that (θt)t hits, and the time when it hits.
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and t(ξ) be the random variables equal to the first and second coordinates of ξ, conditional

on ξ ̸= ∅. Note that ψt = θ if and only if ξ = (θ, t′) for some t′ ≤ t. Then we can write∫ ∞

0

e−γtEθ0
[
f(θt)1{ψt∈Ψ}

]
dt =

∫ ∞

0

e−γtEθ0
[
f(θt)1{ξ∈Ψ×[0,∞)}1{t≥t(ξ)}

]
dt =

=

∫
Ψ×[0,∞)

(∫ ∞

t(ξ)

e−γtEθ0 [f(θt)|ξ]dt
)
dPξ =

∫
Ψ×[0,∞)

e−γt(ξ)U(θ(ξ))dPξ =

=

∫
Ψ×[0,∞)

(∫ ∞

t(ξ)

γe−γtdt

)
U(θ(ξ))dPξ =

∫ ∞

0

∫
Ψ×[0,∞)

γe−γt1{t≥t(ξ)}U(θ(ξ))dPξdt =

=

∫ ∞

0

γe−γt
(∫

Ψ×[0,∞)

1{t≥t(ξ)}U(θ(ξ))dPξ

)
dt =

∫ ∞

0

γe−γt
(∫

Ψ

U(θ)dPψt

)
dt =

∫
Ψ

U(θ)dP̃

as desired. ■

Lemma 12. In any equilibrium, α(0, 1) = α(0, 0) = 1: after a success, the risky policy is

used.

Proof of Lemma 12.

Lt0 = 0 implies Lt = 0 for all t ≥ t0 no matter what policy path is followed, and hence

p(Lt, x) = 1 for all t and x. For the rest of the argument, we can then write V (0, π) instead

of V (x, 0, π). By Lemma 11, there is ρ ∈ [0, 1] such that

V (0, 0) = ρ
s

γ
+ (1− ρ)V (0, 1). (20)

It follows that there exist η ∈ [0, 1] and η′ ∈ [0, 1] such that η ≥ η′61 and

V (0, 0) = η
s

γ
+ (1− η)g

γ
, V (0, 1) = η′

s

γ
+ (1− η′)g

γ
.

η and η′ are the discounted fractions of the expected time that the organization spends on

the safe policy, when starting in states (0, 0) and (0, 1), respectively.

If η > η′, then V (0, 0) < V (0, 1). In particular, V (m(0, π), 0, 1) > V (m(0, π), 0, 0) for all

π, which implies that α(0, π) = 1 for all π by Condition (ii). If η = η′, then V (0, 0) = V (0, 1).

Because V (0, 0, ϵ) < V (0, 1, ϵ) for any ϵ > 0, by Condition (iii), in this case we must also

have α(0, π) = 1 for all π. ■

61η ≥ η′ for the following reason. V (0, 1) = η′ sγ +(1− η′) gγ and Equation (20) imply that η s
γ +(1− η) gγ =

V (0, 0) = ρ s
γ + (1− ρ)V (0, 1) = (ρ+ (1− ρ)η′) sγ + (1− ρ)(1− η′) gγ . Then η = ρ+ (1− ρ)η′, which implies

that η ≥ η′, as required.
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Lemma 13. For any state (L, π), there is a CDF G with support62 contained in [0,∞] such

that

V (x, L, π) =

∫ ∞

0

VT (p(L, x))dG(T )

for all x ∈ [0, 1], where VT (y) is as defined in the text. Similarly, for any state (L, π) and

any ϵ > 0, there is a distribution Gϵ with support contained in [0,∞] such that

V (x, L, π, ϵ) =

∫ ∞

0

VT (p(L, x))dGϵ(T )

for any x ∈ [0, 1].

Proof of Lemma 13.

We prove the first statement. The proof of the second statement is analogous.

Without loss of generality, we can assume that the distribution over future states induced

by the continuation starting in state (L, π) satisfies the following: the policy is equal to 1 in

the beginning and, if it ever changes from 1 to 0, it never changes back to 1. Indeed, suppose

that π switches from 1 to 0 at time t and switches back at a random time t+ ν, where ν is

distributed according to some CDF H. Let p =
∫∞
0
e−γνdH(ν). Then a continuation path

on which the policy only switches to 0 at time t with probability 1− p and never returns to

1 after switching induces the same discounted distribution over future states.

Under the above assumption and given that the policy always remains at 1 after a success

by Lemma 12, the path of play can be described as follows: experimentation continues

uninterrupted until a success or a permanent stop. Then we can let G be the CDF of the

stopping time, conditional on no success being observed. ■

Proposition 16. In any equilibrium, for any L, if 0 ∈ α(L, 1), then α(L, 0) = 0: switches

to the safe policy are permanent.

Proof of Proposition 16.

If L = 0, then α(0, π) = 1 for all π by Lemma 12, so the statement is vacuously true.

Suppose then that L > 0. Suppose for the sake of contradiction that the statement is false.

Observe that for all L there is ρL ∈ [0, 1] independent of x such that

V (x, L, 0) = ρL
s

γ
+ (1− ρL)V (x, L, 1) (21)

for all x. This follows from Lemma 11, with the added observation that ρL (equivalently, P̃

62G is a degenerate CDF that can take the value ∞ with positive probability. Equivalently, G satisfies all
the standard conditions for the definition of a CDF, except that limT→∞G(T ) ≤ 1 instead of limT→∞G(T ) =
1. This is needed to allow for the case of perpetual experimentation.

27



in the notation of Lemma 11) is independent of x in this case because the stochastic process

governing (L, π) is independent of x if π = 0.63 We now consider three cases.

Case 1: Suppose that ρL > 0, and that the expected amount of experimentation after

switching to state (L, 1) is positive. Clearly V (x, L, 1) is strictly increasing in x. Then

Equation (21) implies that V (x, L, 1)−V (x, L, 0) is strictly increasing in x. Since m(L, 1) >

m(L, 0), we have V (m(L, 1), L, 1) − V (m(L, 1), L, 0) > V (m(L, 0), L, 1) − V (m(L, 0), L, 0).

Since 1 ∈ α(L, 0) implies that V (m(L, 0), L, 1)−V (m(L, 0), L, 0) ≥ 0, we have V (m(L, 1), L, 1)−
V (m(L, 1), L, 0) > 0, and thus α(L, 1) = 1, a contradiction.

Case 2: Suppose that ρL = 0. We make two observations. First, V (x, L, 0) = V (x, L, 1)

for all x. Second, the expected amount of experimentation after switching to state (L, 1) is

positive. Indeed, ρL = 0 implies that, conditional on the state at t being (Lt, πt) = (L, 0),

we have inf{t′ > t : πt′ = 1} = t a.s. Since Condition (d) requires that πt+ exists and the

result that inf{t′ > t : πt′ = 1} = t a.s. rules out that πt+ = 0 with a positive probability,

it must be that πt+ = 1 a.s. In turn, this implies that inf{t′ > t : πt′ = 0} > t a.s. Then

E [inf{t′ > t : πt′ = 0}]− t > 0.

By definition, we have

V (x, L, 0, ϵ) = ρϵ
s

γ
+ (1− ρϵ)V (x, L, 1) (22)

for ρϵ = 1− e−γϵ.
In the following argument, for convenience, we subtract s

γ
from every value function.64

Let us calculate V (x, L, 1, ϵ) and V (x, L, 1). Let Gϵ(T ) and G(T ) be the corresponding CDFs

from Lemma 13. By definition, for T ∈ [0, ϵ], 1 − Gϵ(T ) = 1 and for T > ϵ, 1 − Gϵ(T ) =

63If (Lt, πt) has càdlàg paths, this follows from Lemma 11. If not, then Lemma 11 cannot be applied
because the stochastic process in question is not necessarily right-continuous. However, we can use Corollary
3 of Lemma 10 to obtain a payoff-equivalent path of play with càdlàg paths and then apply Lemma 11 to it.

64That is, we let V̊ (x, L, π) = V (x, L, π) − s
γ , V̊T (x) = VT (x) − s

γ , V̊ (x, L, π, ϵ) = V (x, L, π, ϵ) − s
γ . For

the rest of this proof, we work with the normalized functions V̊ , V̊T , V̊ , but drop the operator ◦ to simplify
notation.
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1−G(T )
1−G(ϵ)

.65 Hence for ϵ > 0 sufficiently small we have

V (x, L, 1, ϵ) =

∫ ∞

0

VT (p(L, x))dGϵ(T ) =

=

∫ ϵ

0

VT (p(L, x))dGϵ(T ) +

∫ ∞

ϵ

VT (p(L, x))dGϵ(T ) =

= 0 +
1

1−G(ϵ)

∫ ∞

ϵ

VT (p(L, x))dG(T ) =

=
V (x, L, 1)

1−G(ϵ)
− 1

1−G(ϵ)

∫ ϵ

0

VT (p(L, x))dG(T ) =
V (x, L, 1)

1−G(ϵ)
+G(ϵ)O(ϵ)

The third equality follows from the fact that Gϵ(T ) = 0 for all T ∈ [0, ϵ] and Gϵ(T ) =
G(T )−G(ϵ)
1−G(ϵ)

for T > ϵ. For the last equality, we use the fact that limϵ→0G(ϵ) = 0 since

inf{t′ > t : πt′ = 0} > t a.s. and the fact that ∂+VT (x)
∂T

∣∣∣
T=0

= max{xg, a} − s + xλ(g−s)
γ

by

part (ii) of Lemma 3.66

Our assumption that 1 ∈ α(L, 0) implies that V (m(L, 0), L, 1) ≥ 0: else we would

obtain a contradiction of Condition (iii), as Equation 22 and our calculation of V (x, L, 1, ϵ)

would imply that V (m(L, 0), L, 1) ≤ V (m(L, 0), L, 1) + G(ϵ)O(ϵ) < e−γϵV (m(L, 0), L, 1) =

V (x, L, 0, ϵ) for all ϵ small enough.

It follows that, because m(L, 1) > m(L, 0) and x 7→ V (x, L, 1) is strictly increasing,

V (m(L, 1), L, 1) > 0. Then V (x, L, 1, ϵ) = V (x,L,1)
1−G(ϵ)

+G(ϵ)O(ϵ) implies that V (m(L, 1), L, 1, ϵ) ≥
V (m(L, 1), L, 1). Moreover, because V (m(L, 1), L, 1) > 0, we have V (m(L, 1), L, 1) >

e−γϵV (m(L, 1), L, 1) = V (m(L, 1), L, 0, ϵ).67 Then V (m(L, 1), L, 1, ϵ) > V (m(L, 1), L, 0, ϵ)

for all ϵ > 0 sufficiently small. By Condition (iii), this implies that α(L, 1) = 1, a contradic-

tion.

Case 3: Suppose that the expected amount of experimentation starting in state (L, 1)

is zero. In this case V (x, L, 0) = V (x, L, 1) = s
γ
for all x, and V (x, L, 0, ϵ) = s

γ
for all x and

ϵ > 0. Again, we subtract s
γ
from every value function for simplicity.

By definition, for all ϵ > 0 the path starting in state (L, 1, ϵ) has a positive expected

amount of experimentation. Moreover, Gϵ defined in Lemma 13 is FOSD-decreasing in ϵ

(that is, if ϵ′ < ϵ, then Gϵ′ ≥ Gϵ) and hence, taken as a function of ϵ, has a pointwise limit

65This is immediate if stopping is always permanent on the equilibrium path, i.e., if G(T ) actually repre-
sents the probability of stopping experimentation permanently at time T . It is also true in general, though
for a less obvious reason: the operation defined in Lemma 13 mapping a path of play to a cdf G, and the
operation modifying a path of play to never stop for t ∈ [0, ϵ), commute.

66In greater detail,
∫ ϵ

0
VT (p(L, x))dG(T ) ≈

∫ ϵ

0
(k0T + k1)dG(T ) ≤

∫ ϵ

0
(k0ϵ + k1)dG(T ) = (k0ϵ +

k1)
∫ ϵ

0
dG(T ) = (k0ϵ + k1)(G(ϵ) − G(0)) = (k0ϵ + k1)G(ϵ) = k0ϵG(ϵ) = G(ϵ)O(ϵ) where we have used

the fact that we subtracted s
γ from every value function to get rid of the constant k1.

67Recall that we have subtracted s
γ from every value function.
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G (that is, Gϵ(T ) −−→
ϵ→0

G(T ) for all T ≥ 0). Then

V (x, L, 1, ϵ) −−→
ϵ→0

∫ ∞

0

VT (p(L, x))dG(T )

Since 1 ∈ α(L, 0), there exists a sequence ϵn ↘ 0 such that V (m(L, 0), L, 1, ϵn) ≥ 0 for all

n,68 whence limϵ→0 V (m(L, 0), L, 1, ϵ) ≥ 0.

There are now two cases. First, if EG[T ] > 0, we can use the following argument.

limϵ→0 V (m(L, 0), L, 1, ϵ) ≥ 0 implies that limϵ→0 V (m(L, 1), L, 1, ϵ) > 0 because m(L, 1) >

m(L, 0) and x 7→ V (x, L, 1) is strictly increasing as EG[T ] > 0. But then V (m(L, 1), L, 1, ϵ) >

0 for all ϵ > 0 sufficiently small, which implies that α(L, 1) = 1 by Condition (iii), a

contradiction.

Second, if EG[T ] = 0, then we can employ a similar argument using the fact that, by

Lemma 3, ∂Vϵ(p(L,x))
∂ϵ

∣∣∣∣∣
ϵ=0

is strictly increasing in x, and we have

lim
ϵ→0

V (x, L, 1, ϵ)

EGϵ [T ]
= lim

ϵ→0

Vϵ(p(L, x))

ϵ
=
∂Vϵ(p(L, x))

∂ϵ

∣∣∣∣∣
ϵ=0

.

■

The remaining results of the paper can then be proved in this model.

68Suppose for the sake of contradiction that 1 ∈ α(L, 0) and such a sequence does not exist. Then for all
ϵ > 0 sufficiently small we have V (m(L, 0), L, 1, ϵ) < 0 (note that we have used the fact that we subtract
s
γ from every value function here). Then V (m(L, 0), L, 1, ϵ) < V (m(L, 0), L, 0, ϵ) = 0, which contradicts

1 ∈ α(L, 0) by Condition (iii).
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