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Abstract

We note and correct a flaw in the analysis of Ferejohn (1986)’s seminal model

of electoral accountability. In the original solution, it is supposedly optimal for the

voter to impose a stationary path of performance targets on officeholders. We show

that, in fact, stationary paths are sub-optimal; the voter can do better by choosing

a path of performance targets that become increasingly lenient over time, which

extracts more effort from the politician earlier on. We explicitly solve for the optimal

performance targets for a class of examples and discuss the substantive implications

of our exercise.
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John Ferejohn’s seminal1 1986 paper introduced one of the first game-theoretic models

of electoral accountability. It marked the beginning of a research program in formal

political theory that is still growing to this day (see Duggan and Martinelli, 2017 for a

survey, as well as Meirowitz, 2007; Anesi and Buisseret, 2022; Acharya, Lipnowski and

Ramos, 2022 and many others for recent work in the area).

Ferejohn (1986) (Ferejohn henceforth) is notable for treating the accountability of elected

officials as a moral hazard problem—that is, how should voters incentivize politicians

to exert effort when their observed performance also depends on events outside their

control? Ferejohn took seriously the fact that, unlike in typical economic contexts (e.g.,

Holmström, 1979), the voter can only reward the politician with reelection, not direct

payments; and she has no ability to credibly commit (say through a contract) to the

conditions for reelecting the incumbent. Instead, the voter-politician interaction follows

the logic of a repeated game: the voter reelects the incumbent in each period only if a

performance target is met, and she follows through on this threat because she would

otherwise lose her credibility in the future.

Ferejohn’s analysis yields a strikingly simple solution: the voter’s optimal path of per-

formance targets is purportedly shown to be stationary. That is, it is best for the voter

to set the same reelection threshold in every period, and the incumbent’s resulting re-

election probability is the same in every period. In this note, we show that a key step

in the original analysis is incorrect, and correcting the mistake qualitatively alters the

nature of the solution. Indeed, the true optimal path of performance targets is in general

not stationary, and can be quite complex. For a class of examples, we show that the

equilibrium reelection threshold decreases over time, and the incumbent’s probability

of reelection increases over time. In other words, the voter finds it optimal to become

more lenient in later periods as a way to encourage effort in early periods. Now, it is well

1The paper has garnered over three thousand citations and is the most cited work by John Ferejohn
according to Google Scholar.
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known in the dynamic agency and contracting literature that backloading incentives

may be optimal (Lazear 1981; Ray 2002; Burdett and Coles 2003; Acemoglu, Golosov and

Tsyvinski 2008; Acharya, Lipnowski and Ramos 2022). What we show is that this logic was

already present in Ferejohn’s simple model of accountability. We discuss the substantive

implications of our findings in the conclusion.

Beyond Ferejohn (1986) itself, the most related prior paper is Acharya, Lipnowski and

Ramos (2022) (ALR henceforth). ALR study a variation of Ferejohn’s model, with sim-

plified productivity shocks and an expanded strategy space for the voter. They fully

characterize the voter-optimal equilibrium, which exhibits an extreme form of back-

loaded incentive provision, with the possibility of politicians achieving full job security

(“complete entrenchment”) on the path of play. In particular, stationary retention rules

are strictly sub-optimal in ALR’s setting whenever the moral hazard problem binds. These

observations appear to be at odds with Ferejohn’s on an intuitive level, though ALR’s

and Ferejohn’s settings differ enough that the two sets of results are not in direct contra-

diction. Our note revisits Ferejohn’s exact model, pinpoints a mathematical error in his

analysis, and shows, after correction, that incentive backloading is in fact also a feature

of the equilibrium Ferejohn meant to characterize. We comment further on the relation

between ALR and our exercise in the conclusion.

1 Preliminaries

In this section we outline the model as presented in Ferejohn (1986) and make some

useful observations, adhering to the original notation as much as possible. Propositions

from the original paper retain their numbering. New propositions are enumerated by

letters. The reader may wish to consult the original paper for a more detailed discussion

of the model.
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1.1 Model overview

Time is discrete and infinite, and is indexed by t = 0, 1, . . . . There is a long-lived represen-

tative voter and an infinite population of homogeneous politicians, one of which is the

initial officeholder. In each period, the voter and the current officeholder (“incumbent”)

engage in the following interaction, described in chronological order:

1. The incumbent privately observes the realization of a state variable2 θt ∈ [0,m],

drawn iid from a continuously differentiable c.d.f. F .

2. Then, the incumbent chooses an effort level at ∈ [0,∞).

3. The voter observes the incumbent’s performance, atθt, but not at or θt separately.

Then the voter decides whether to reelect the incumbent or not.

4. If the incumbent is voted out, an identical replacement comes into office and the

game proceeds as before.

The voter’s flow payoff is ut = atθt. The incumbent’s flow payoff is vt = W − ϕ(at), where

W > 0 is office rents, and ϕ(a) is the incumbent’s cost of effort. An officeholder receives

zero flow payoff when out of office. The cost function ϕ is assumed to be increasing and

convex, with ϕ(0) = 0. Discounted payoffs take the usual form with a common discount

factor δ ∈ (0, 1). In particular, voter welfare is defined to be
∑∞

t=0 δ
tut.

Ferejohn considers the possibility that the officeholder may return to office in the future

after being ousted. Formally, the incumbent, if ousted from office, has a probability

λ ∈ [0, 1] of returning to power in each future period in which the (new) incumbent fails

to be reelected. (It is worth noting that subsequent work mostly focuses on the case of

λ = 0 i.e., the incumbent cannot return to office after being ousted. Some of our results

are obtained for this case.)

2The state variable represents shocks to the incumbent’s productivity.
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Ferejohn provides a somewhat loose definition of strategies and equilibrium and does

not spell out their relationship to standard solution concepts. To improve transparency,

we introduce some notation and terminology of our own. To begin, a generic strategy

profile takes the form (a,R), where a(h) is the officeholder’s effort at history h and R(h′) is

the voter’s reelection decision at history h′, with R = 1 being reelect. The structure of the

game allows one to define perfect Bayesian equilibria (PBE) or perfect public equilibria

(PPE) in the standard way.3

Ferejohn imposes a condition on the voter’s strategy that effectively selects a class of

equilibria from the full set of PBEs (or PPEs). In particular, the voter is only allowed to

condition reelection on the incumbent’s current performance and on calendar time.4

Formally, Ferejohn assumes that the voter is restricted to using a (retrospective) cutoff

rule, denoted by Kt ∈ [0,∞) for t ≥ 0, by which the officeholder at time t is reelected if

and only if atθt ≥ Kt. In terms of the notation that we introduced, a strategy profile that

satisfies the above restriction can be written as (a,R(K)), where K = (Kt)t≥0 is the voter’s

cutoff rule,5 and the function a(t, θt) specifies the officeholder’s effort in period t and

state θt. This description presumes that all officeholders use a common strategy, which

does not condition on past values of θs nor the players’ past actions. This is without loss

of generality since the voter’s own strategy does not discriminate between officeholders

or condition on the past.

Following Ferejohn’s terminology, we say that a strategy profile (a,R(K)) constitutes an

equilibrium if the officeholder’s effort choice a(t, θt) maximizes her expected utility at

all histories given the cutoff rule K. Note that this definition of equilibrium places no

3Ferejohn does not explicitly state his solution concept. Various remarks in the paper suggest subgame
perfect equilibrium (SPE) as the basis for his notion of equilibrium (see e.g., the last two paragraphs of
Section 1 and the remark on p. 15). Technically, SPE does not apply here because the voter does not
observe realizations of θt, and so there are no proper subgames. However, PBE and PPE both capture the
notion of sequential rationality intended by Ferejohn.

4Absent this restriction, the voter might in general condition reelection in period t on the entire history
of the game up to t.

5A cutoff rule (Kt)t≥0 induces a voter strategy R(K) such that R(K)(ht) = 1{atθt≥Kt} at all period-t
histories ht. Allowing more general off-path continuations does not affect the results.
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explicit restrictions on equilibrium cutoff rule K. This is not an issue because it turns out

that any cutoff rule is sequentially rational and so is compatible with standard solution

concepts such as PBE or PPE. The reason is that, if the voter deviated in some period t

(say by reelecting when atθt < Kt or vice versa), this would have no impact on her flow

payoff (as today’s performance is sunk); no effect through selection (as officeholders are

homogeneous); and no impact on the officeholder(s)’ future behavior (as their strategy

will not condition on this deviation). Thus, the voter never benefits from a deviation.

Finally, we denote the voter’s welfare in equilibrium for a given cutoff rule by U(K), and

following Ferejohn’s terminology, we say K is the optimal retrospective rule if it maximizes

U(K) compared to any other cutoff rule.6

1.2 Voter’s problem

We begin by summarizing the initial steps in Ferejohn’s original analysis, which are

correct and will be useful for later discussion. As noted above, any sequence of cutoffs

(Kt)t≥0 is consistent with an equilibrium (not necessarily maximizing voter welfare).

Consequently, the optimal retrospective rule is what the voter would choose if she could

credibly commit to a sequence of cutoffs at the start of the game. Thus, the optimal

retrospective rule can be viewed as the “full commitment solution,” i.e., the rule that the

voter would choose if she had the power to credibly and permanently commit to a rule at

the start of the game.

Consider the incumbent’s response to an arbitrary cutoff rule (Kt)t≥0. For a cutoff Kt, the

incumbent’s optimal effort at date t is either Kt

θt
, which is just enough to secure reelection,

6See Ferejohn’s definition of the optimal retrospective rule at the end of page 15 of the original paper.
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or 0.7 The incumbent will choose to meet the cutoff if and only if

W − ϕ

(
Kt

θt

)
+ δV I

t+1 ≥ W + δV O
t+1, (1)

where V I
t+1 is the incumbent’s continuation value if he remains in office at date t+ 1, and

V O
t+1 is the continuation value if he is ousted. (This may be positive as the incumbent may

return to office in the future i.e., λ > 0.) Rearranging terms, one obtains the following

characterization of the incumbent’s optimal effort.

Proposition 1 (Ferejohn (1986)). Given a sequence of cutoffs (Kt)t≥0, the incumbent’s

optimal strategy is

at =
Kt

θt
iff θt ≥ θ∗t :=

Kt

ϕ−1
(
δV I

t+1 − δV O
t+1

) , (2)

and at = 0 otherwise.

Thus, a sequence of cutoffs (Kt)t≥0 induces a unique sequence of cutoffs in the state

variable (θ∗t )t≥0, such that the incumbent exerts effort, and is reelected, if and only if the

realization of state is greater than θ∗t . To make explicit that the cutoff in the state variable

is dependent on the cutoff rule, we sometimes write θ∗t (K).

Proposition 1 implies that voter welfare can be written as

U(K) =
∞∑
t=0

δtKtPr

[
θt ≥

Kt

ϕ−1
(
δV I

t+1 − δV O
t+1

)] (3)

=
∞∑
t=0

δtKt(1− F (θ∗t (K))). (3’)

7The incumbent has no incentive to over-perform because doing so has no effect on future cutoffs, and
therefore his future prospects. This stems from the assumption that the cutoff rule does not condition on
past performances; see Footnote 4.
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Ferejohn then proceeds to characterize the optimal retrospective rule. It is worth empha-

sizing that the difference between Ferejohn’s characterization of the optimal retrospective

rule and ours owes to a subtle error in his solution to the maximization problem, and not

to any difference in the setup or the solution concept.

2 The optimal retrospective rule

In this section, we explicate and rectify the error in the original solution. We then trace

the impact of our correction on the substantive predictions of the model, and discuss

some new empirical implications. Proofs of new results are contained in the Appendix.

In addition, the Online Appendix discusses original results on comparative statics, and

provides a teaching guide to help walk graduate students through the proof of Proposition

C, which is rather involved. This may be useful for instructors of formal modeling classes

covering models of accountability.

2.1 Optimality condition

Ferejohn’s Proposition 2 states that the optimal retrospective rule satisfies the following

equation:

Kt =
1− F (θ∗t )

f(θ∗t )
ϕ−1(δV I

t+1 − δV O
t+1) (4)

for all t. (Our Equation 4 is identical to Ferejohn’s equation (4).) The proof in Ferejohn

claims that “this [equation (4)] follows directly from the first-order conditions derived

from equation (3)” (see p. 16 of Ferejohn; his equation (3) is also the same as our Equation

3).

Essentially, Equation 4 is meant to be the first-order condition, ∂U
∂Kt

= 0, slightly rear-

ranged. But it is not. In particular, Equation 4 is obtained under the presumption that V I
s
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and V O
s in the right-hand side of Equation 3 are independent of Kt for all s.8 However,

V I
s and V O

s are in fact not independent of Kt for t > s: in general, the incumbent’s value

function in a given period depends on the performance targets in the current period

and all future periods. Thus, altering the value of Kt changes V I
0 , . . . , V I

t , V O
0 , . . . , V O

t ,

and hence θ∗0, . . . , θ∗t−1, in addition to θ∗t . The reason is simple: if Kt increases, the value

of reaching period t in office declines, as it is harder to be reelected at that point. The

officeholder’s motivation to exert effort then also declines in all periods before t, as she

has (in expectation) a shorter tenure to look forward to.9

To summarize, the original derivation of the first-order condition incorrectly presumes

that the choice of cutoff Kt affects voter welfare only through its effect on her flow payoff

at date t. The correct first-order condition for the optimal retrospective rule can be

derived from Equation 3’ as follows:

0 =
∂U

∂Kt

=δt(1− F (θ∗t (K))) + δtKt(−f(θ∗t (K)))
∂θ∗t (K)

∂Kt

+
t−1∑
s=0

δsKs(−f(θ∗s(K)))
∂θ∗s(K)

∂Kt

.

Again using that ∂θ∗t (K)

∂Kt
= 1

ϕ−1(δV I
t+1−δV O

t+1)
and rearranging (while suppressing the depen-

dence on K to simplify notation), we obtain

Kt =
1− F (θ∗t )

f(θ∗t )
ϕ−1(δV I

t+1 − δV O
t+1)

−
ϕ−1(δV I

t+1 − δV O
t+1)

f(θ∗t )

t−1∑
s=0

δs−tKsf(θ
∗
s)

∂θ∗s
∂Kt

.

(4’)

8In this case, Kt would appear only in the t-th term of the summation. Differentiating Equation 3’
would yield the first-order condition

0 =
∂U

∂Kt
= δt

(
1− F (θ∗t )−Ktf(θ

∗
t )

∂θ∗t
∂Kt

)
,

where ∂θ∗
t

∂Kt
= 1

ϕ−1(δV I
t+1−δV O

t+1)
by Equation 2. Rearranging this expression indeed yields Equation 4.

9This argument is straightforward if λ is low enough or, in particular, zero. For high values of λ, it is less
clear that being fired in period t is harmful because it may make it easier to return to power in period t+ 2,
if the cutoff in period t+ 1 is very high.
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The values of Kt pinned down by Equations 4 and 4’ differ by the additional term in the

second line of Equation 4’. The two equations are equivalent only when this term is zero.

This is trivially the case for t = 0, as the last term is an empty summation, but generally

false for t > 0. Intuitively, the last term of Equation 4’ captures the effect of varying Kt on

the voter’s flow payoff in periods prior to t. In the special case of λ = 0, or more generally

if λ is small, it is easy to show that this last term is negative.

2.2 On the stationarity of equilibrium

An important property of Ferejohn’s solution based on the erroneous first-order condi-

tion is that the optimal retrospective rule is stationary, which simplifies the calculation of

the voter’s and officeholder’s utilities and the comparative statics. This property also has

two empirical implications. First, the officeholder’s performance, atθt, should be constant

over time (up until the period she is ousted). Second, the probability of reelection will

be constant over time, since the cutoff value of the state variable leading to reelection,

θ∗t , is stationary as well. As shown below, these observations no longer hold in general

when one uses the correct FOC given in Equation 4’. The officeholder’s behavior and the

probability of turnover may instead follow complex dynamics. A complete characteriza-

tion of equilibrium in the fullest generality is difficult. For tractability, we impose some

assumptions on the environment. They are not overly restrictive and are common in the

literature.

For the results below, denote the (constant) sequence of cutoffs that solves Equation 4

for all t by K ≡ (Kt = K)t≥0.10 That is, K is the cutoff rule claimed to be optimal in the

original analysis. First, we show that the stationary rule K is not optimal for the voter

when the incumbent cannot return to office after being ousted.

10Note that this is a fixed point of Equation 4 as V I
t+1, V O

t+1, and θ∗t are all functions of the sequence of
performance thresholds (Ks)s≥0.
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Proposition A. Assume that λ = 0. Then ∂U(K)
∂K0

= 0 and ∂U(K)
∂Kt

< 0 for all t > 0. In addition,

the optimal retrospective rule is not stationary.

In words, the stationary retrospective rule K identified in the original analysis is in fact

suboptimal. The voter can improve on K by marginally lowering the cutoff (i.e., being

more lenient toward the incumbent) from the second period onward. Intuitively, the

effect of the proposed deviation at a date t > 0 on the voter’s contemporaneous flow

payoff is nearly neutral, but it allows the voter to extract strictly higher effort from the

incumbent in earlier periods.

An implication of Proposition A is that the equilibrium cutoffs θ∗t for the state variable

are also non-stationary. Moreover, we can show that, if the probability distribution of

the state variable satisfies the monotone hazard rate property,11 then θ∗t < θ∗0 for all

t > 0. That is, the incumbent is less likely to be reelected in the initial period than in any

subsequent period:

Corollary B. Assume that λ = 0 and 1−F (x)
f(x)

is a decreasing function. Then, in equilibrium,

the probability of office turnover in period t = 0 is greater than in any subsequent period.

Another implication of Proposition A is that even if we force the voter to use stationary

cutoffs, the stationary cutoff derived in the original analysis, K , is still not optimal for the

voter. Indeed, reducing the cutoff by some small ϵ in every period improves voter welfare

while preserving stationarity. This follows from the fact that, letting K be a sequence with

Kt ≡ K, it is the case that dU(K)
dK

=
∑

t≥0
∂U(K)
∂Kt

< 0.

The preceding logic suggests that under the actual optimal retrospective rule, cutoffs Kt

should be monotonically decreasing in t. After all, if the benefit of lowering Kt below K

is that the officeholder’s motivation improves before t, the resulting gains accrue over

more periods the higher t is. We can prove this analytically for the special case of λ = 0,

11This is a standard technical assumption (it is also used in Ferejohn’s Proposition 3).
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ϕ(a) ≡ a, and θt uniformly distributed on [0, 1]. This same set of assumptions also appears

in Ferejohn (see the Corollary on p. 17).

Proposition C. Suppose that λ = 0, ϕ(a) ≡ a and θt ∼ U [0, 1]. Then

1. The optimal retrospective rule (Kt)t≥0 decreases in t towards a limit K∞ < K, where

K is the stationary cutoff obtained in Ferejohn’s original analysis. More precisely,

K0 > K > K1 > . . . ↘ K∞.

2. The corresponding sequence of state variable cutoffs, (θ∗t )t≥0, decreases in t towards

a limit θ∗∞ < 1
2
, where 1

2
is the cutoff obtained in Ferejohn’s original analysis. More

precisely, θ∗0 =
1
2
> θ∗1 > . . . ↘ θ∗∞.

3. θ∗∞ is the unique solution of the equation 1− 2θ∗∞ + θ∗∞ ln(θ∗∞) = 0 between 0 and 1

(θ∗∞ ≈ 0.318), and K∞ = δθ∗∞W
1−δθ∗∞

.

The precise values of θ∗t and Kt can be obtained by solving a recursive system of equations

(Equations 13, 14, 18 in Appendix A). Also, part 2 of the Proposition holds for a broader

class of distributions of θt than the uniform distribution (see Corollary D in Appendix A).

Proposition C reflects the general intuition about increasing leniency: because setting

lower targets in later periods incentivizes the incumbent to work more in early periods,

the voter prefers to be lenient and set Kt < K for large t. In fact, she does this for all t ≥ 1.

In contrast, she sets an initial target K0 > K: because the expectation of future leniency

is enough to motivate the incumbent early on, the voter can afford to extract high effort

in the first period.

Corresponding to declining cutoffs in performance, θ∗t decreases over time—that is, the

incumbent is more likely to meet the performance target at later times—for two reasons.

First, because Kt is decreasing in t, the target becomes easier to meet over time. Second,

as the voter becomes more lenient, the incumbent’s continuation value from retaining
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office increases, which further incentivizes the incumbent to seek reelection. Hence, the

incumbent’s probability of reelection increases period over period.

2.3 Additional remarks

More on stationarity It is useful to examine the issue of stationarity from a method-

ological perspective, for it illuminates a subtle pitfall when applying the principle of

dynamic programming. In the Remark on p. 17 of Ferejohn (1986), it is argued that the

optimal retrospective rule is stationary because one can rewrite the maximization of

voter welfare as a dynamic programming problem. The general if-then logic is correct

but the premise turns out not to hold in this instance. One cannot apply dynamic pro-

gramming techniques to maximizing voter welfare in Ferejohn’s setting because they are

valid only if the maximization problem can be separated into two isolated problems: one

of optimizing future choices, and one of optimizing the current choice, given (optimal)

future choices. Such separation is impossible in Ferejohn’s model since, as we argued

above, future choices of cutoffs impact current flow payoffs.

One can construct a variant of Ferejohn’s model in which the stationary rule K from the

original analysis is indeed optimal. Consider a modified game in which, at the beginning

of each period, the voter can announce and commit to a cutoff for that period (the

voter cannot commit to cutoffs in future periods.) Besides one-period commitment

power, let us also impose Markov Perfect Equilibirum (MPE) as the solution concept,

so that the voter’s announced cutoffs must be the same at every history (as they are all

payoff-equivalent) on or off the equilibrium path. In this version of the game, the voter

announces Kt = K for all t in the unique MPE. Indeed, the game has been modified

in a way that allows us to apply the dynamic programming principle: when the voter

announces Kt at time t, she has no reason to worry how this choice might have affected

the incumbent’s incentives in past periods, since the past has already run its course. Her
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problem at any time t is then equivalent to the problem she faces at time 0, and thus

it is optimal to induce θ∗t to satisfy the same first-order condition that θ∗0 satisfies, as

given in Equation 4. Modifying the game in this way, however, goes against Ferejohn’s

stated intention of not prescribing exogenous commitment power to the voter (see p. 9

of Ferejohn).

Barro (1973) Another seminal paper on electoral accountability, often mentioned

alongside Ferejohn’s, is Barro (1973). The two models differ in the details but they

are both concerned with how voters should optimally set a performance threshold for

reelecting politicians. Strikingly, the stationarity of performance cutoffs is also a feature of

the equilibrium in Barro’s model (with the exception of the last period, as Barro considers

a game of finite horizon). While Barro does not spell out a solution concept, or whether

the voter’s choice of cutoff is a credible commitment, his solution is also only valid if we

assume that the voter has one-period commitment power, as sketched above. A detailed

examination of Barro’s analysis is beyond the scope of the current paper.

Comparative statics In addition to characterizing the equilibrium, Ferejohn also ana-

lyzes comparative statics, finding that voter welfare is increasing in the value of office W

and decreasing in the probability of returning to office after being ousted, λ. Both claims

are intuitive, but the original proofs no longer go through given the correct characteri-

zation of equilibrium. Nonetheless, the comparative statics results do continue to hold,

under some assumptions. See the Online Appendix for details.

3 Conclusion

In this paper, we identify and correct an error in the original analysis in Ferejohn. Our

solution predicts time-series patterns of politician behavior and political turnover that
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differ qualitatively from those implied by the original solution. These patterns translate

into a set of testable implications that ought to inform empirical studies of accountability,

and our exercise shows that Ferejohn’s model yields even richer conceptual insights than

previously thought.

Specifically, the voter’s increasing leniency toward politicians has a flavor of so-called

democratic fatigue (or backsliding). Declining accountability in existing models of

democratic fatigue arises as the result of a changing institutional environment due

to the actions of strategic politicians (Luo and Przeworski, 2023; Howell, Shepsle and

Wolton, 2023), or as the result of changing voter preferences (Grillo and Prato, 2023).

Here, “democratic fatigue” arises in spite of the underlying environment being stationary.

Another point of distinction is that democratic fatigue is typically viewed in a negative

light, i.e., voters are worse off because of it. Here, the incumbent is less accountable as

time progresses purely because this is the most efficient way for the voter to incentivize

her. The voter is better off relative to a situation where accountability remains stable!

Putting it simply, democratic fatigue is the result of the voter’s “deal with the devil.”

Notably, the voter-optimal retention rule in ALR also features incentive backloading

for intuitively similar reasons as our corrected solution of Ferejohn’s model. The two

main departures of ALR’s setting from Ferejohn’s are: 1) ALR assume the state variable

θt takes binary values rather than being drawn from a continuous distribution, and 2)

ALR allow the voter to choose fully history-dependent reelection rules, as opposed to

rules that condition only on current performance and calendar time (cf. Footnote 4). In

their setting, the voter can, and indeed will, base reelection decisions on the incumbent’s

entire performance history. At a minimum, in all non-trivial cases, the voter-optimal

retention rule will condition on the incumbent’s seniority.12 The upshot is that Ferejohn

prohibits the voter from choosing the class of strategies that would be considered optimal

by ALR. For this reason, ALR’s results, while suggestive, do not have a direct bearing on

12Seniority is distinct from calendar time since the former is reset whenever the incumbent is replaced.

15



the (correct) solution of the exact problem laid out by Ferejohn.

References

Acemoglu, Daron, Michael Golosov, and Aleh Tsyvinski. 2008. “Political Economy of

Mechanisms.” Econometrica, 76(3): 619–641.

Acharya, Avidit, Elliot Lipnowski, and Joao Ramos. 2022. “Political Accountability Under

Moral Hazard.” working paper.

Anesi, Vincent, and Peter Buisseret. 2022. “Making Elections Work: Accountability with

Selection and Control.” American Economic Journal: Microeconomics, 14(4): 616–44.

Barro, Robert J. 1973. “The Control of Politicians: an Economic Model.” Public Choice,

19–42.

Burdett, Ken, and Melvyn Coles. 2003. “Equilibrium wage-tenure contracts.” Economet-

rica, 71(5): 1377–1404.

Duggan, John, and César Martinelli. 2017. “The Political Economy of Dynamic Elections:

Accountability, Commitment, and Responsiveness.” Journal of Economic Literature,

55(3): 916–84.

Ferejohn, John. 1986. “Incumbent Performance and Electoral Control.” Public Choice,

5–25.

Grillo, Edoardo, and Carlo Prato. 2023. “Reference points and democratic backsliding.”

American Journal of Political Science, 67(1): 71–88.

Holmström, Bengt. 1979. “Moral Hazard and Observability.” The Bell Journal of Eco-

nomics, 74–91.

16



Howell, William G, Kenneth A Shepsle, and Stephane Wolton. 2023. “Executive ab-

solutism: the dynamics of authority acquisition in a system of separated powers.”

Quarterly Journal of Political Science, 18(2): 243–275.

Lazear, Edward P. 1981. “Agency, Earnings Profiles, Productivity, and Hours Restrictions.”

The American Economic Review, 71(4): 606–620.

Luo, Zhaotian, and Adam Przeworski. 2023. “Democracy and its Vulnerabilities: Dynam-

ics of Democratic Backsliding.” Quarterly Journal of Political Science, 18(1): 105–130.

Meirowitz, Adam. 2007. “Probabilistic Voting and Accountability in Elections with Uncer-

tain Policy Constraints.” Journal of Public Economic Theory, 9(1): 41–68.

Ray, Debraj. 2002. “The Time Structure of Self-Enforcing Agreements.” Econometrica,

70(2): 547–582.

17



Appendix

A Proofs

Proof of Proposition A. From Equation (2), we have that ∂θ∗t (K)

∂Kt
=

θ∗t (K)

Kt
. We can then write

∂U

∂Kt

= δt(1− F (θ∗t (K)))− δtf(θ∗t (K))θ∗t (K) +
t−1∑
s=0

δsKs(−f(θ∗s(K)))
∂θ∗s(K)

∂Kt

. (5)

For t = 0, the third term vanishes, so setting ∂U
∂K0

= 0 implies

0 = 1− F (θ∗0)− f(θ∗0)θ
∗
0, (6)

which is equivalent to (4) due to (2).

For t > 0, the two conditions will differ unless the third term were to vanish. To calculate

∂θ∗s (K)
∂Kt

(s < t), observe that θ∗s depends on Kt only through V I
s+1, which depends on Kt

only through V I
s+2, . . . , which depends on Kt only through V I

t . (Here we leverage our

assumption that λ = 0, as otherwise both V I
s+1 and V O

s+1, etc. would matter.) Denote

V I
t = Vt. Then we can write

∂θ∗s(K)

∂Kt

=
∂θ∗s
∂Vs+1

(
t−1∏

l=s+1

∂Vl

∂Vl+1

)
∂Vt

∂Kt

. (7)

Differentiating (2), which under the assumption λ = 0 becomes θ∗t =
Kt

ϕ−1(δVt+1)
, we obtain

∂θ∗s
∂Vs+1

= − Ks

(ϕ−1(δVs+1))2
(ϕ−1)′(δVs+1)δ = −δ

θ∗2s
Ks

1

ϕ′
(

Ks

θ∗s

) ,
where in the last step we have again substituted (2) and used the inverse function the-

orem. Next we aim to calculate the remaining derivatives in (7). By definition of the
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officeholder’s payoffs,

Vt = W +

∫ m

θ∗t

[
δVt+1 − ϕ

(
Kt

θ

)]
f(θ)dθ, (8)

whence

∂Vt

∂Vt+1

= δ(1− F (θ∗t )) (9)

∂Vt

∂Kt

= −
∫ m

θ∗t

f(θ)ϕ′
(
Kt

θ

)
1

θ
dθ. (10)

Then we can rewrite (7) and (5) respectively as

∂θ∗s(K)

∂Kt

= δt−s θ
∗2
s

Ks

1

ϕ′
(

Ks

θ∗s

) t−1∏
l=s+1

(1− F (θ∗l ))

∫ m

θ∗t

f(θ)ϕ′
(
Kt

θ

)
1

θ
dθ (11)

δ−t ∂U

∂Kt

= 1− F (θ∗t )− f(θ∗t )θ
∗
t

−
t−1∑
s=0

f(θ∗s)
θ∗2s

ϕ′
(

Ks

θ∗s

) t−1∏
l=s+1

(1− F (θ∗l ))

∫ m

θ∗t

f(θ)ϕ′
(
Kt

θ

)
1

θ
dθ. (12)

Recall that θ∗ ≡ θ∗t (K) solves the equation 0 = 1 − F (θ∗) − f(θ∗)θ∗ (this follows from

our discussion in 2.1 and is also shown on p. 16 of the original paper). Hence, when

evaluating ∂U
∂Kt

at K = K, the first line of the expression in (12) vanishes. The second line

is an empty summation for t = 0, but clearly negative for all t > 0. This proves the first

part of the proposition.

For the second, let K be an optimal retrospective rule, and suppose it is stationary, i.e.,

Kt ≡ K for all t. Since the officeholder’s problem is stationary, it follows that θ∗t ≡ θ̃

is constant in t. Since an optimal rule must satisfy ∂U
∂K0

= 0, (12) implies that 0 =

1− F (θ̃)− f(θ̃)θ̃. (Alternatively, we could have ∂U
∂K0

≤ 0 and K0 = 0 in a corner solution.

But then, as K is stationary, Kt = 0 for all t, which is clearly suboptimal.) This again

implies that ∂U
∂Kt

< 0 for all t > 0, so K is suboptimal (unless Kt = 0 for all t > 0, which
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violates either the optimality or the stationarity of K).

Proof of Corollary B. Let K be an optimal retrospective rule. Note that, if K0 = 0, the voter

could do better with a rule K̃ given by K̃t ≡ Kt+1, as all the voter’s (positive) payoffs are

moved forward by one period.13 Thus K0 > 0. Then, by (12), θ∗0 must solve the equation

0 = 1− F (θ)− f(θ)θ, so θ∗0 =
1−F (θ∗0)

f(θ∗0)
. For t > 0, if Kt > 0, we must have ∂U

∂Kt
= 0, whence

1 − F (θ∗t ) − f(θ∗t )θ
∗
t > 0 by (12). Then θ∗t <

1−F (θ∗t )
f(θ∗t )

. Under the assumption that 1−F (x)
f(x)

is

decreasing in x, this implies θ∗t < θ∗0. On the other hand, if Kt = 0, then θ∗t = 0 < θ∗0 by

(2).

Proof of Proposition C. The proof has four main parts. First, we simplify and rearrange

(12) to obtain a recursive system of equations which pins down a unique sequence of

thresholds (θ∗t )t≥0 satisfying (12) for all t. Second, we use various properties of the system

to show that this sequence is decreasing. Third, we show that the optimal rule cannot

involve corner solutions (in particular, θ∗t must be positive for all t), so it must indeed

satisfy (12) for all t, and hence it must be the sequence we have characterized. Fourth,

we show that the optimal cutoffs (Kt)t≥0 can be written in terms of the thresholds (θ∗t )t≥0,

and use the resulting expressions to show that the sequence (Kt)t≥0 is also decreasing.

Pinning down θ∗t . Under the assumption ϕ(a) ≡ a, (12) simplifies to

0 = 1− F (θ∗t )− f(θ∗t )θ
∗
t −

t−1∑
s=0

f(θ∗s)θ
∗2
s

t−1∏
l=s+1

(1− F (θ∗l ))

∫ m

θ∗t

f(θ)

θ
dθ

for all t such that Kt > 0. Note that, while we are differentiating with respect to Kt, the

resulting conditions can all be stated in terms of the θ∗t . This should be interpreted as: a

sequence of performance targets is optimal for the voters iff it induces the officeholder

to only exert effort for states above these thresholds.

13This is a strict improvement unless Kt ≡ 0 is optimal, which is impossible.
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Under the assumption θt ∼ U [0, 1], (12) further simplifies to

0 = 1− 2θ∗t + ln(θ∗t )
t−1∑
s=0

θ∗2s

t−1∏
l=s+1

(1− θ∗l ).

Let At =
∑t−1

s=0 θ
∗2
s

∏t−1
l=s+1(1−θ∗l ). Then we can calculate (θ∗t )t≥0 and (At)t≥0 as the solutions

to a recursive system given by A0 = 0 and

0 = 1− 2θ∗t + At ln(θ
∗
t ) (13)

At+1 = (1− θ∗t )At + θ∗2t . (14)

For At > 0, (13) may in general have two values of θ∗t that serve as solutions. If so,

note that, because the right-hand side represents ∂U
Kt

, and it is concave in θ∗t (which is

proportional to Kt), the lower solution would correspond to a local minimum of U (as ∂U
Kt

crosses zero from below), while the higher one would correspond to a local maximum

(as ∂U
Kt

crosses zero from above). So the only the higher solution is valid.

θ∗t is decreasing in t. Let T : [0, x] → R be a function implicitly defined as follows: for

each x ∈ [0, x], y = T (x) is the highest solution to the equation 0 = 1− 2y + x ln(y). x is

the highest value of x for which the equation has any solutions y ∈ [0, 1].

Lemma 1. There is a unique valid solution to the system (13–14). In it, At ↗ A∞ and

θ∗t ↘ θ∗∞. Moreover, θ∗∞ = A∞.

Proof. Note first that T must be decreasing: as x increases, the expression 1− 2y + x ln(y)

decreases for all y ∈ (0, 1). Since 1− 2y+x ln(y) is decreasing around the highest solution

y = T (x), y must decrease to compensate.

Let S be a mapping defined by S(A) = (1− T (A))A+ T (A)2. In particular, At+1 = S(At)

for all t. By the implicit function theorem, T ′(A) = − ln(T )

−2+A
T

=
2T−1

A

2−A
T

= T
A

2T−1
2T−A

.
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Then

S ′ = −T ′A+ (1− T ) + 2TT ′ = T ′(2T − A) + 1− T =
T

A

2T − 1

2T − A
(2T − A) + 1− T

=
T

A
(2T − 1) + 1− T =

T

A
A ln(T ) + 1− T = T ln(T ) + 1− T.

This expression is positive for all T ∈ (0, 1): indeed, its derivative with respect to T is

ln(T ) < 0 for all T ∈ (0, 1), and its value at T = 1 is 0. Hence S ′(A) > 0 for all A in the

domain of T .

Since A0 = 0, θ∗0 = 1
2
, so A1 =

1
4
> 0 = A0. Then, because S is increasing, A2 = S(A1) >

S(A0) = A1. Iterating, At+1 > At for all t. (At)t≥0 must then converge to a limit A.

Moreover, because T is decreasing, and θ∗t = T (At), the fact that (At)t≥0 is increasing

implies that (θ∗t )t≥0 is decreasing, towards some limit θ∗∞.

As t → ∞, At+1 → A∞, while (1− θ∗t )At+ θ∗2t → (1− θ∗∞)A∞+ θ∗2∞. Since θ∗∞ > 0 (otherwise

(13) cannot hold for high t), (14) implies A∞ = θ∗∞.

It follows that θ∗∞ = T (θ∗∞), so θ∗∞ solves the equation 1 − 2θ∗∞ + θ∗∞ ln(θ∗∞) = 0. As the

left-hand side of this equation is decreasing over
(
0, 1

2

)
, and it goes from positive to

negative over this interval, it has a unique solution in this range, which is approximately

0.318. With this observation, we conclude the proof of Proposition C.2, and the first half

of Proposition C.3.

No corner solutions. Because there is a unique solution to the system of FOCs from

(12), the local optimum we have found must be the solution to the voter’s problem, if

said solution is interior. Next, we rule out optimal retrospective rules involving corner

solutions, i.e., Kt = 0 and ∂U
∂Kt

≤ 0 for some values of t.

Suppose for the sake of contradiction that such a rule K̃ is optimal, and that t0 is the first

period in which ∂U(K̃)
∂Kt

< 0. Then the sequence (θ̃∗t )t≥0 solves (13–14) for t < t0. Let us

calculate the impact on the voter’s welfare of modifying K̃ to a new rule K̂ such that the
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sequence (θ̂∗t )t≥0 solves (13–14) for t ≤ t0, and θ̂∗t ≡ θ̃∗t for t > t0 (i.e., shifting θ̃∗t from 0 to

the interior critical point of (12) and leaving other thresholds unchanged).

To do this, define K̃(θ) to be a rule inducing θ∗t0(K̃(θ)) = θ and θ∗t (K̃(θ)) = θ̃∗t = θ̂∗t for other

t.14 In particular, K̂ = K̃(θ∗t0). Then

dU(K̃(θ))

dθ
=

t0∑
t=0

∂U(K̃(θ))

∂Kt

dK̃t(θ)

dθ
=

∂U(K̃(θ))

∂Kt0

δVt0+1,

where we have used that ∂U(K̃(θ))
∂Kt

= 0 for t < t0 because K̃(θ) solves (12) for t < t0; that (2)

simplifies to θ∗t0 =
Kt0

δVt0+1
, so K̃t0(θ) = θδVt0+1; and that the voter’s payoffs after t0, as well

as Vt0+1, are constant in θ because K̃(θ) is independent of θ for t > t0. Hence

U(K̂)− U(K̃) = δVt0+1

∫ θ∗t0

0

∂U(K̃(θ))

∂Kt0

dθ = δVt0+1

∫ θ∗t0

0

(1− 2θ + At0 ln(θ))dθ

= δVt0+1

[
θ∗t0 − θ∗2t0 + At0(θ

∗
t0
ln(θ∗t0)− θ∗t0)

]
= δVt0+1θ

∗
t0

[
θ∗t0 − At0

]
,

applying (13) in the last step. Hence U(K̂) > U(K̃), as Lemma 1 implies θ∗t0 > At0 , which

shows that K̃ was not optimal.

Kt is decreasing in t. Next, we provide a characterization of the optimal retrospective

rule K = (Kt)t≥0 that induces the optimal sequence of thresholds (θ∗t )t≥0 characterized in

Lemma 1.

Recall that, under the assumptions λ = 0, ϕ(a) ≡ a and θt ∼ U [0, 1], (2) simplifies to

θ∗t =
Kt

δVt+1
, and (8), the incumbent’s Bellman equation, simplifies to

Vt = W +

∫ m

θ∗t

[
ϕ

(
Kt

θ∗t

)
− ϕ

(
Kt

θ

)]
f(θ)dθ =

∫ 1

θ∗t

[
Kt

θ∗t
− Kt

θ

]
dθ

= W + (1− θ∗t )
Kt

θ∗t
+Kt ln(θ

∗
t ). (15)

14We provide tools below to produce rules inducing any sequence of thresholds, in particular allowing
the construction of K̃(θ). Indeed, reversing the steps between (15) and (18) yields that, for any sequence of
thresholds (θ∗t )t≥0, the sequence of Kt as defined by (18) makes (θ∗t )t≥0 the equilibrium thresholds.
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Rearranging (2) and (15),

Kt

δθ∗t
= Vt+1 = W +Kt+1

(
1− θ∗t+1

θ∗t+1

+ ln(θ∗t+1)

)
Kt

θ∗t
= δW + δ

(
1− θ∗t+1 + θ∗t+1 ln(θ

∗
t+1)

) Kt+1

θ∗t+1

. (16)

Iteratively applying (16), we obtain, for any τ > t,

Kt

θ∗t
= δW

τ−1∑
s=t

δs−t

s∏
l=t+1

(1− θ∗l + θ∗l ln(θ
∗
l )) +

Kτ

θ∗τ
δτ−t

τ∏
l=t+1

(1− θ∗l + θ∗l ln(θ
∗
l )). (17)

As argued above, 1 − x + x ln(x) ∈ [0, 1] for x ∈ (0, 1]; and we have shown θ∗t ∈ (0, 1
2
] for

all t. Hence the expression
∑τ−1

s=t δ
s−t
∏s

l=t+1(1− θ∗l + θ∗l ln(θ
∗
l )) increases towards a limit

between zero and 1
1−δ

as τ → ∞. Moreover, δτ−t
∏τ

l=t+1(1 − θ∗l + θ∗l ln(θ
∗
l )) ≤ δτ−t which

converges to zero as τ → ∞, and Kτ

θ∗τ
= δVτ+1 ≤ δW

1−δ
for all τ by (2). Thus, taking the limit

as τ → ∞, we obtain

Kt = δθ∗tW
∞∑
s=t

δs−t

s∏
l=t+1

(1− θ∗l + θ∗l ln(θ
∗
l )). (18)

Next, we will show that Kt is decreasing in t, towards a limit K∞. (This will also imply

that Vt is increasing in t.)

We aim to show that, for all t,

Kt > Kt+1

⇐⇒ θ∗t

∞∑
s=t

δs−t

s∏
l=t+1

(1− θ∗l + θ∗l ln(θ
∗
l )) > θ∗t+1

∞∑
s=t+1

δs−(t+1)

s∏
l=t+2

(1− θ∗l + θ∗l ln(θ
∗
l )).
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It suffices to show that the inequality holds term by term, that is, that for all s ≥ t,

θ∗t δ
s−t

s∏
l=t+1

(1− θ∗l + θ∗l ln(θ
∗
l )) > θ∗t+1δ

s+1−(t+1)

s+1∏
l=t+2

(1− θ∗l + θ∗l ln(θ
∗
l ))

⇐⇒ θ∗t (1− θ∗t+1 + θ∗t+1 ln(θ
∗
t+1)) > θ∗t+1(1− θ∗s+1 + θ∗s+1 ln(θ

∗
s+1)).

Recall that 1 − x + x ln(x) is positive and decreasing in x for x ∈ (0, 1), and that θ∗s+1 is

decreasing in s. It follows that the tightest case, in which the right-hand side is as high as

possible, is as s → ∞, so it is enough to show that

θ∗t (1− θ∗t+1 + θ∗t+1 ln(θ
∗
t+1)) > θ∗t+1(1− θ∗∞ + θ∗∞ ln(θ∗∞))

⇐⇒ θ∗t

(
1− θ∗t+1

θ∗t+1

+ ln(θ∗t+1)

)
> θ∗∞

for all t, using that 1− 2θ∗∞ + θ∗∞ ln(θ∗∞) = 0.

We prove this in two steps. First, we check manually that this inequality holds for t = 0

and t = 1. We obtain θ∗0 = 1
2
, θ∗1 ≈ 0.3786, θ∗2 ≈ 0.3380 and θ∗ ≈ 0.3178, so the cases t = 0

and t = 1 boil down to 0.3350 > 0.3178 and 0.3308 > 0.3178.

Next, we show something more general than needed: that, given a value of A, and letting

θ = T (A), Ã = S(A) and θ̃ = T (Ã) = T (S(A)), we have

θ

(
1− θ̃

θ̃
+ ln(θ̃)

)
> θ∗∞

whenever A is such that θ ∈ (θ∗∞, θ∗2], i.e., for A ∈ [A2, θ
∗
∞). To show this, rewrite the

left-hand side of the inequality as T (A)
(

1−T (S(A))
T (S(A))

+ ln(T (S(A)))
)

=: Z(A). Note that
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Z(θ∗∞) = θ∗∞. Then it is enough to show that Z ′(A) < 0 for A ∈ (A2, θ
∗
∞). Now

Z ′(A) = T ′(A)

(
1− θ̃

θ̃
+ ln(θ̃)

)
+ T (A)

(
− 1

θ̃2
+

1

θ̃

)
T ′(S(A))S ′(A)

= − ln(θ)

−2 + A
θ

(
1− θ̃

θ̃
+ ln(θ̃)

)
+ θ

(
− 1

θ̃2
+

1

θ̃

)(
− ln(θ̃)

−2 + Ã
θ̃

)
(1− θ + θ ln(θ))

=
ln(θ)

2− 2θ−1
θ ln(θ)

(
1− θ̃

θ̃
+ ln(θ̃)

)
+ θ

(
− 1

θ̃2
+

1

θ̃

)
ln(θ̃)

2− 2θ̃−1
θ̃ ln(θ̃)

(1− θ + θ ln(θ)),

which is negative iff

θ

(
1− 1

θ̃

)
ln(θ̃)

2− 2θ̃−1
θ̃ ln(θ̃)

(1− θ + θ ln(θ)) < − ln(θ)

2− 2θ−1
θ ln(θ)

(
1− θ̃ + θ̃ ln(θ̃)

)

⇐⇒ θ
2− 2θ−1

θ ln(θ)

− ln(θ)
(1− θ + θ ln(θ)) <

θ̃

1− θ̃

(
1− θ̃ + θ̃ ln(θ̃)

) 2− 2θ̃−1
θ̃ ln(θ̃)

− ln(θ̃)
(19)

where we have used that
2− 2x−1

x ln(x)

− ln(x)
is positive for x ∈ (0.2, 1] (note that 2 − 2x−1

x ln(x)
> 0 iff

2x ln(x)− 2x+ 1 < 0; this function is decreasing in x ∈ (0, 1) and vanishes at x ≈ 0.1867).

Define R(x) = x
2− 2x−1

x ln(x)

− ln(x)
(1− x+ x ln(x)) = f(x)g(x)

h(x)
where f(x) = 2x− 2x−1

ln(x)
, g(x) = 1− x+

x ln(x), h(x) = − ln(x). We will show that R(x) is increasing in x for x ∈ [0.3178, 0.3380].

R′(x) = R(x)

(
f ′

f
+

g′

g
− h′

h

)

= R(x)

2− 2 ln(x)− 2x−1
x

ln(x)2

2x− 2x−1
ln(x)

+
ln(x)

1− x+ x ln(x)
− 1

x ln(x)


= R(x)

(
2 ln(x)− 2 + 2x−1

x ln(x)

2x ln(x)− 2x+ 1
+

ln(x)

1− x+ x ln(x)
− 1

x ln(x)

)

= R(x)

(
2 ln(x)

2x ln(x)− 2x+ 1
+

ln(x)

1− x+ x ln(x)
− 2

x ln(x)

)
.

Clearly −2
x ln(x)

> 0 for x ∈ (0, 1). In addition, for x ∈ (0.2, 1),
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2 ln(x)

2x ln(x)− 2x+ 1
+

ln(x)

1− x+ x ln(x)
> 0

⇐⇒ 2

2x ln(x)− 2x+ 1
< − 1

1− x+ x ln(x)

⇐⇒ 3− 4x+ 4x ln(x) > 0,

where we have used that 2x ln(x) − 2x + 1 < 0 for x ∈ (0.2, 1). Since 3 − 4x + 4x ln(x)

is decreasing in x for x ∈ (0, 1) and vanishes at x ≈ 0.3824, it is positive for all x ∈

[0.3178, 0.3380]. Thus R′(x) > 0 in this interval, as we wanted to show.

Now, because R is increasing, and 1
1−x

is increasing in x, it is enough to show that (19)

holds even if we replace θ with θ∗2 and θ̃ with θ∗∞. In that case we obtain

θ∗2
2− 2θ∗2−1

θ∗2 ln(θ∗2)

− ln(θ∗2)
(1− θ∗2 + θ∗2 ln(θ

∗
2)) < 0.103,

θ∗∞
1− θ∗∞

(1− θ∗∞ + θ∗∞ ln(θ∗∞))
2− 2θ∗∞−1

θ∗∞ ln(θ∗∞)

− ln(θ∗∞)
> 0.129

which proves the result.

Taking the limit of (18) as t goes to infinity, and using that 1 − 2θ∗∞ + θ∗∞ ln(θ∗∞) = 0, we

obtain

K∞ = δθ∗∞W

∞∑
s=0

δsθ∗s∞ =
δθ∗∞W

1− δθ∗∞
=

δW
1
θ∗∞

− δ
=

δW

2− δ − ln(θ∗∞)
,

which finishes the proof of Proposition C.3.

Finally we show that K0 > K > K1, which is the only missing part of Proposition C.1.

Recall that, in Ferejohn (1986)’s stationary solution, θ∗t =
1
2

for all t. Then, by (2), K = δV
2

,

where V = W +
∫ 1

1
2

(
δV − K

θ

)
dθ. Rearranging, V = W

1−δ( 1
2
+ 1

2
ln( 1

2))
and K = δW

2−δ(1+ln( 1
2))

.
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Taking t = 0 in Equation 18,

K0 = δ
1

2
W

∞∑
s=0

δs
s∏

l=1

(1− θ∗l + θ∗l ln(θ
∗
l )) >

> δ
1

2
W

∞∑
s=0

δs
s∏

l=1

(1− θ∗0 + θ∗0 ln(θ
∗
0)) =

δW

2

∞∑
s=0

δs
(
1

2
+

1

2
ln

(
1

2

))s

= K,

where we have used that 1− x+ x ln(x) is decreasing over
(
0, 1

2

)
.

On the other hand,

K1 = δθ∗1W
∞∑
s=1

δs
s∏

l=2

(1− θ∗l + θ∗l ln(θ
∗
l )) <

< δθ∗1W
∞∑
s=0

δs
s∏

l=1

(1− θ∗∞ + θ∗∞ ln(θ∗∞)) =

= δθ∗1W
∞∑
s=0

δsθ∗s∞ =
δθ∗1W

1− δθ∗∞
≤ 0.379δW

1− 0.317δ
.

To show that K1 < K ≈ δW
2−0.306δ

, it is enough to check that 0.379× (2−0.306δ) < 1−0.317δ

for all δ ∈ [0, 1], which is true.

Corollary D. Suppose λ = 0, ϕ(a) ≡ a, and f can be written as follows: f(θ) = Ce
∫ θ
0

η(t)

t2
dt,

for any C > 0 and any differentiable function η such that η(t)
t2

is bounded and η′(t) > −2

for all t. Then, in the optimal retrospective rule, the sequence of cutoffs (θ∗t ) decreases in t

towards a positive limit θ∗∞.

Proof. The same proof goes through as in Proposition C. To see why, note that, for a

general density f , the system (13-14) becomes

0 = 1− F (θ∗t )− f(θ∗t )θ
∗
t − AtB(θ∗t ) (20)

At+1 = (1− F (θ∗t ))At + f(θ∗t )θ
∗2
t (21)
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with B(x) =
∫ m

x
f(θ)
θ
dθ. As before, define T (A) to be the largest solution y of 1 − F (y) −

f(y)y − AB(y). If f(1) > 0, which our conditions on f imply, this expression is negative

for y = 1, so 1− F (y)− f(y)y − AB(y) must cross zero from above at y = T (A), whence

T ′(A) < 0.

Define S(A) = (1 − F (T (A))A + f(T (A))T (A)2. After analogous algebra, S ′(A) = 1 −

F (T )−B(T )T . The expression 1− F (T )−B(T )T has derivative −B(T ) < 0 with respect

to T and evaluates to 0 at T = 1, so it is positive for T < 1, whence S is increasing. Then,

since A1 > 0 = A0, (At)t≥0 is increasing, and since θ∗t = T (At) and T ′ < 0, (θ∗t )t≥0 is

decreasing.

To finish the proof, we need to verify that T (A) is in fact the U-maximizing value of θ∗t . We

do this in two parts. First, we show that our conditions on f ensure that the right-hand

side of (20), as a function of θ∗t , crosses zero from above only once, so there are no other

local maxima of U . Second, we show that choosing θ∗t = 0 cannot be better than the

interior optimum T (A).

For the first part, we will argue that, for an arbitrary value of A, all critical points θ0 of

1−F (θ)− f(θ)θ−AB(θ) must be local maxima. Because there must be a local minimum

between two local maxima, this will imply that in fact there is at most only one local

maximum, whence the expression can only cross zero from above once. Indeed, suppose

θ0 is a critical point, i.e., −2f(θ0) − f ′(θ0)θ0 − AB′(θ0) = −2f(θ0) − f ′(θ0)θ0 + Af(θ0)
θ0

= 0.

Then A = 2θ0 +
f ′(θ0)
f(θ0)

θ20. θ0 is a local maximum if

−3f ′(θ0)− f ′′(θ0)θ0 − AB′′(θ0) < 0

⇐⇒ 3f ′(θ0) + f ′′(θ0)θ0 >

(
2θ0 +

f ′(θ0)

f(θ0)
θ20

)
f ′(θ0)θ0 − f(θ0)

θ20

⇐⇒ 3
f ′(θ0)

f(θ0)
+

f ′′(θ0)

f(θ0)
θ0 >

(
2 +

f ′(θ0)

f(θ0)
θ0

)(
f ′(θ)

f(θ)
− 1

θ

)

We will verify that this condition holds for all θ for the class of densities f we have
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specified. Write λ(x) =
∫ x

0
η(t)
t2
dt, so f(x) = eλ(x). Then f ′(x) = λ′(x)f(x), and f ′′(x) =

λ′′(x)f(x) + (λ′(x))2f(x), so we need to verify that

3λ′(x) + (λ′′(x) + (λ′(x))2)x > (2 + λ′(x)x)

(
λ′(x)− 1

x

)
⇐⇒ 3λ′(x) + (λ′′(x) + (λ′(x))2)x > (λ′(x))2x− λ′(x) + 2λ′(x)− 2

x

⇐⇒ 2λ′(x) + λ′′(x)x > −2

x

Since λ′(x) = η(x)
x2 and λ′′(x) = η′(x)x2−η(x)2x

x4 , the inequality simplifies to η′(x) > −2, as we

assumed.

For the second part, as in our original argument, it is enough to verify that

0 <

∫ θ∗t

0

[
1− F (θ)− f(θ)θ − At

∫ m

θ

f(θ̃)

θ̃
dθ̃

]
dθ

⇐⇒ 0 <

∫ θ∗t

0

[1− F (θ)− f(θ)θ] dθ − At

∫ m

0

f(θ)

θ
min(θ, θ∗t )dθ

⇐⇒ 0 < θ(1− F (θ))|θ
∗
t
0 − At (F (θ∗t ) + θ∗tB(θ∗t ))

Applying (20), the right-hand side equals −AtF (θ∗t ) + f(θ∗t )θ
∗2
t , which by (21) equals

At+1 − At, which is positive by our previous argument.

Note that we obtain θ ∼ U [0, 1], i.e. f(x) ≡ 1, by choosing C = 1 and η ≡ 0. Intuitively, the

condition η′(x) > −2 ensures that f is not too steeply concave in any part of its domain.

It is equivalent to requiring that
(
x2 f

′(x)
f(x)

)′
> −2 for all x.
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Online Appendix

B Comparative Statics

Consider now the general case in which the incumbent might come back to power after

being ousted. More specifically, as in Ferejohn (1986), assume that, when a politician is

out of office, she returns to power with probability λ ∈ [0, 1] whenever the new incumbent

is ousted.

The following proposition provides a partial analog to Ferejohn’s Propositions 4 and 5.

Proposition D (Comparative Statics).

(i) Assume either λ = 0 or ϕ(a) ≡ a. Then the voter’s payoff U from the optimal ret-

rospective rule is increasing in W . In the latter case, it is exactly proportional to

W .

(ii) The voter’s maximized payoff U is higher if λ = 0 than if λ takes any positive value in

a neighborhood of 0.

Proof. For part (i), suppose first that λ = 0. Then, for any rule K, it is clear that the

officeholder’s value function Vt at any t is increasing in W , as her payoff is increasing

in W for any fixed strategy she may follow. By (2), it follows that θ∗t (K) is a decreasing

function of W for all t, and hence U(K) is increasing in W from any rule (in particular the

optimal one).

Suppose now instead that ϕ(a) ≡ a. In this case, the problem faced by the officeholder

given a pair (W,K) is homothetic in W and K: if (W,K) is multiplied by α > 0, the

officeholder’s set of payoffs attainable by different strategies is also multiplied by α (as

multiplying all effort choices by α achieves exactly this, and the process is reversible);

thus the optimal payoffs in the continuation at each t, Vt, are also multiplied by α, and
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the best-response efforts at(θ) are multiplied by α for all θ, with the thresholds θ∗t (K)

remaining fixed. It follows that the voter’s attainable payoffs are also proportional to W :

if W is multiplied by α, she can multiply her equilibrium payoff by α by also scaling the

rule K by the same factor.

For part (ii), let us rewrite the officeholder’s Bellman equation (15) for the general case of

λ ≥ 0. Her utility when in and out of office, respectively, is

V I
t = W +

∫ m

θ∗t

[
δV I

t+1 − ϕ

(
Kt

θ

)]
f(θ)dθ + F (θ∗t )δV

O
t+1, (22)

V O
t = F (θ∗t )(λδV

I
t+1 + (1− λ)δV O

t+1) + (1− F (θ∗t ))δV
O
t+1 =

= δV O
t+1 + F (θ∗t )λδ(V

I
t+1 − V O

t+1), (23)

where F (θ∗t ) is the probability that the new incumbent forfeits her position, giving the

officeholder a chance λ to return. Denoting ∆Vt = V I
t −V O

t , and combining (22) and (23),

∆Vt = W −
∫ m

θ∗t

ϕ

(
Kt

θ

)
f(θ)dθ + (1− F (θ∗t ))δV

I
t+1 + F (θ∗t )δV

O
t+1 − δV O

t+1 − F (θ∗t )λδ∆Vt+1

= W −
∫ m

θ∗t

ϕ

(
Kt

θ

)
f(θ)dθ + (1− (1 + λ)F (θ∗t ))δ∆Vt+1. (24)

Assume that λ ∈ [0, 1−δ
δ
]. This assumption guarantees that ∆Vt ≥ 0 for all t.15 Indeed,

ϕ
(
Kt

θ

)
≤ δ∆Vt+1 for all θ ≥ θ∗t by (2), so (24) implies

∆Vt ≥ W − (1− F (θ∗t ))δ∆Vt+1 + (1− (1 + λ)F (θ∗t ))δ∆Vt+1 =

= W − λF (θ∗t )δ∆Vt+1 ≥ W − λδ
W

1− δ
≥ 0.

Denote by V I
t (K, λ), V O

t (K, λ), ∆Vt(K, λ) the officeholder’s payoffs as a function of the

15For high values of λ, it is in principle possible to have ∆Vt < 0, so that the officeholder in period t− 1
might prefer not to be reelected. Intuitively, this could happen if Kt is very high, Kt′ is low for t′ > t, and λ
is high. Then being in power in period t likely means being out of power forever after, whereas being out of
power in period t allows the officeholder to come to power in period t+ 1 and stay there for a long time.
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parameters K, λ. We will now argue that a higher λ weakens the officeholder’s incentives

for effort:

Lemma 2. If λ0 ≤ 1−δ
δ

, ∆Vt(K, λ0) ≤ ∆Vt(K, 0) for all t, K.

Proof. We begin by showing that, if λ0 ≤ 1−δ
δ

and ∆Vt+1(K, λ0) ≤ ∆Vt+1(K, 0), then

∆Vt(K, λ0) ≤ ∆Vt(K, 0).

Let Ṽ I
t (K, 0) be the officeholder’s continuation payoff in period t, in the case λ = 0, if

she followed the optimal strategy for λ = λ0 (i.e., choosing θ∗t = θ∗t (K, λ0)). Of course,

Ṽ I
t (K, 0) ≤ V I

t (K, 0) = ∆Vt(K, 0) because this is in general suboptimal. By (24),

Ṽ I
t (K, 0) = W −

∫ m

θ∗t (K,λ0)

ϕ

(
Kt

θ

)
f(θ)dθ + (1− F (θ∗t (K, λ0)))δ∆Vt+1(K, 0) ≥

≥ W −
∫ m

θ∗t (K,λ0)

ϕ

(
Kt

θ

)
f(θ)dθ + (1− F (θ∗t (K, λ0)))δ∆Vt+1(K, λ0) ≥

≥ W −
∫ m

θ∗t (K,λ0)

ϕ

(
Kt

θ

)
f(θ)dθ + (1− (1 + λ0)F (θ∗t (K, λ0)))δ∆Vt+1(K, λ0) =

= ∆Vt(K, λ0),

where we have used that∆Vt+1(K, λ0) ≤ ∆Vt+1(K, 0)by assumption and that∆Vt+1(K, λ0) ≥

0 because λ0 is low enough. More generally, the same argument shows that, if 0 <

∆Vt+1(K, λ0) −∆Vt+1(K, 0) = M , then ∆Vt(K, λ0) −∆Vt(K, 0) ≤ δM . Since ∆Vt′ ≤ W
1−δ

in

all cases, we can conclude that either ∆Vt(K, λ0) ≤ ∆Vt(K, 0) (if the same inequality holds

for any t′ > t) or, if not, then

∆Vt(K, λ0)−∆Vt(K, 0) ≤ δt
′−t(Vt′(K, λ0)−∆Vt′(K, 0)) ≤ δt

′−t W

1− δ

for arbitrarily high t′, which also implies the ∆Vt(K, λ0) ≤ ∆Vt(K, 0).

The result now follows immediately from Lemma 2: if ∆Vt is lower at all t for λ ∈ (0, 1−δ
δ
)

than for λ = 0, then any fixed rule K extracts less effort from the officeholder in the
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former case, and so the voter’s payoff must also be lower when comparing the respective

optimal rules.

C Teaching Guide for Proposition C

Ferejohn’s model is often the first formal model of accountability taught to graduate

students in political science. With that in mind, this Section provides a guide to proving

the main claims of Proposition C that should make the analysis digestible for first or

second-year graduate students.

(i) Note that the voter’s welfare given a retrospective rule K can be written as U(K) =∑∞
t=0 δ

tKt(1− F (θ∗t (K))). (Equation 3’)

Note that, under the assumptions of Proposition C, this simplifies to U(K) =∑∞
t=0 δ

tKt(1− θ∗t (K)).

(ii) Differentiate the expression for U(K) with respect to Kt for each t to obtain the

relevant FOC for each performance threshold:

0 =
∂U

∂Kt

=δt(1− θ∗t (K))− δtKt
∂θ∗t (K)

∂Kt

−
t−1∑
s=0

δsKs
∂θ∗s(K)

∂Kt

.

(iii) Note that Equation 2 reduces to θ∗t =
Kt

δV I
t+1

. Show that this implies ∂θ∗t (K)

∂Kt
=

θ∗t (K)

Kt
.

(iii’) Note that Equation 8 reduces to

V I
t = W +

∫ 1

θ∗t

[
δV I

t+1 −
Kt

θ

]
dθ = W + δV I

t+1(1− θ∗t ) +Kt ln(θ
∗
t ).

Show that this, combined with Equation 2, implies

∂θ∗t (K)

∂Kt+1

= − Kt

δV I2
t+1

ln(θ∗t+1) = −θ∗2t
δ

Kt

ln(θ∗t+1).
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More generally, for s < t, repeated application of Equation 8 yields
∂V I

s+1

∂V I
t

= δt−s−1(1−

θ∗s+1)× . . .× (1− θ∗t−1), so

∂θ∗s(K)

∂Kt

= −θ∗2s
δ

Ks

∂V I
s+1

∂Kt

= −θ∗2s
δ

Ks

∂V I
s+1

∂V I
t

ln(θ∗t ) = −θ∗2s
δt−s

Ks

ln(θ∗t )
t−1∏

l=s+1

(1− θ∗l ).

(iv) Combine (ii), (iii) and (iii’) to obtain

0 =
∂U

∂Kt

=δt(1− θ∗t )− δtθ∗t +
t−1∑
s=0

δt ln(θ∗t )θ
∗2
s

t−1∏
l=s+1

(1− θ∗l )

⇐⇒ 0 =1− 2θ∗t +
t−1∑
s=0

ln(θ∗t )θ
∗2
s

t−1∏
l=s+1

(1− θ∗l )

for all t.

(v) Write down the equations obtained for the first few values of t:

0 = 1− 2θ∗0

0 = 1− 2θ∗1 + ln(θ∗1)θ
∗2
0

0 = 1− 2θ∗2 + ln(θ∗2)(θ
∗2
0 (1− θ∗1) + θ∗21 )

0 = 1− 2θ∗3 + ln(θ∗3)(θ
∗2
0 (1− θ∗1)(1− θ∗2) + θ∗21 (1− θ∗2) + θ∗22 )

. . .

Rewrite the system by defining At =
∑t−1

s=0 θ
∗2
s

∏t−1
l=s(1 − θ∗l ) to obtain Equations

(13)–(14) as shown in the proof of Proposition C:
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A0 = 0 0 = 1− 2θ∗0

A1 = θ∗20 + A0(1− θ∗0) = θ∗20 0 = 1− 2θ∗1 + ln(θ∗1)A1

A2 = θ∗21 + A1(1− θ∗1) 0 = 1− 2θ∗2 + ln(θ∗2)A2

A3 = θ∗22 + A2(1− θ∗2) 0 = 1− 2θ∗3 + ln(θ∗3)A3

. . .

Convince yourself that this recursive system pins down θ∗t and At for all t. Moreover,

defining T implicitly by 0 = 1 − 2T (x) + x ln(T (x)) and defining S by S(x) = (1 −

T (x))x+ T (x)2, convince yourself that θ∗t = T (At) for all t, and At+1 = S(At) for all t.

The steps up to this point cover the preliminary results before Proposition C as well

as the first main step of the proof of this proposition (“pinning down θ∗t ”). The next

step is to show that the sequence (θ∗t )t≥0 is decreasing in t.

(vi) To prove this result analytically, show by using the definitions of S and T that (a) S is

a stricty increasing function; (b) T is a strictly decreasing function; and (c) A1 > A0.

Deduce that At+1 > At for all t and hence θ∗t+1 < θ∗t for all t.

You may like to check the result numerically. Here are two ways. First, using the

recursive system from (v), you may solve numerically for as many elements of the

sequence (θ∗t )t≥0 as desired, and check that the sequence is decreasing. Second, you

may plot the functions S and T to verify that they are increasing and decreasing,

respectively. Both are simple coding exercises.

(vii) Take the limit of Equations (13)–(14) to characterize θ∗∞.

(viii) The analytical proof that (Kt)t≥0 is decreasing is involved. The interested reader

may follow the argument given in Proposition C.
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However, the result is easy to check numerically. Indeed, you only need to follow

the logic from Equation (15) up to Equation (18). If you have solved for (θ∗t )t≥0

numerically on a computer, you can use Equation (18) to then compute Kt for as

many values of t as you like and check that the sequence is decreasing.

The only complication is that the formula for Kt involves values of θ∗s for all s ≥ t.

Of course, you can only calculate a finite number of values of θ∗s . However, if you

are using a value of δ not too close to 1, you can approximate Kt arbitrarily well by

replacing tail values of θ∗s for s >> t with θ∗∞.
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