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Abstract

We analyze the equilibrium set of a general game of verifiable disclosure with
type-independent sender preferences and propose coalition proofness among
sender types as an equilibrium selection criterion. We provide recursive algo-
rithms that output all equilibrium strategies and all coalition-proof equilibrium
strategies. We provide four sets of conditions on the sender’s payoff function and
the mapping from sender types to available messages that guarantee existence
of a coalition-proof equilibrium. We show when coalition proofness coincides
with existing equilibrium selection methods such as receiver optimality and
truth-leaning. We geometrically characterize the sender’s ex-ante utility in the
coalition-proof equilibrium of a disclosure game with a rich message space and
compare it to its counterparts in cheap talk and Bayesian persuasion.
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1 Introduction

Games of verifiable information are used to model many important economic situa-

tions. The canonical models of verifiable disclosure (Grossman, 1981, Milgrom, 1981)

gave us the classic unraveling result that predicts full revelation. More recently, var-

ious papers (Glazer and Rubinstein (2004), Hagenbach, Koessler, and Perez-Richet

(2014), Hart, Kremer, and Perry (2017), Rappoport (2022), and Sher (2011, 2014))

have studied verifiable disclosure games with various properties, such as uncertainty

about how much information the sender has, or limited ability of the sender to re-

veal her type. In these models partial revelation in rich patterns is possible but

typically accompanied by severe multiplicity of equilibria. As a result, most of the

literature has focused on receiver-optimal equilibria, which often coincide with the

receiver commitment solution (Ben-Porath, Dekel, and Lipman (2019), Glazer and

Rubinstein (2004), and Hart, Kremer, and Perry (2017)).

In this paper we take a different approach. We study a game of disclosure with

one substantive assumption: the sender’s preferences are type-independent. Our

setup is general: the sender’s payoff is some function of the receiver’s posterior and

there is some mapping from sender types to available messages. Rather than focusing

on receiver-optimal equilibria, we introduce a notion of coalition proofness, which is

closely related to the existing notion of neologism proofness (Farrell, 1993) for cheap

talk games. The gist of our equilibrium selection argument is that credible coalitional

deviations by groups of senders should be correctly interpreted by the receiver.

Due to the generality of the setting, coalition-proof equilibria may fail to exist, for

similar reasons that neologism-proof equilibria fail to exist in the cheap talk litera-

ture. However, we provide four sets of conditions on the sender’s payoff function and

the message mapping that guarantee existence of a coalition-proof perfect Bayesian

equilibrium (PBE). First, if the message mapping is complete (the set of messages

available to each type is sufficiently rich as in Bertomeu and Cianciaruso, 2018), then

it is sufficient for the sender’s payoff to be quasiconcave. Second, if the sender’s payoff

satisfies betweenness (Hart, Kremer, and Perry, 2017), then no condition on the mes-

sage mapping is required. The last two existence conditions require that the sender

uses cheap talk in addition to verifiable messages. If the sender has access to cheap

talk, then a coalition-proof PBE exists when the message mapping is complete or the

sender’s payoff from fully revealing her type is sufficiently low.
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We characterize coalition-proof PBEs and provide tools for finding them. We show

that all PBE strategies—including coalition-proof ones—are partition strategies; they

partition the type space into coalitions. A coalition consists of a set of sender types,

a set of messages that only they could send, a (possibly mixed) strategy assigning

types to messages, and a common payoff for all types in the coalition.

We provide algorithms that return (i) the set of all partition strategies; (ii) the

set of all PBE strategies; and (iii) the set of all coalition-proof PBE strategies. These

algorithms are recursive and remove one coalition from the game at each step. The

coalition-proof PBE algorithm is simply a greedy version of the PBE algorithm—it

removes a coalition that reaches the highest payoff at each step. Therefore, in a

number of cases, if the sender’s payoff function is “generic” (such that no ties occur

across coalition payoffs), then the coalition-proof PBE is unique.

Finally, we provide a geometric characterization, which we call the tent, of the

sender’s ex-ante utility in a coalition-proof PBE of a disclosure game with a rich

message space. The tent is comparable to the concave closure in information de-

sign (Kamenica and Gentzkow, 2011) and the quasiconcave envelope in cheap talk

(Lipnowski and Ravid, 2020).

Related Literature

Our paper relates to three strands of literature. First, a number of applied papers on

disclosure, motivated by similar concerns to ours, employ notions close to coalition

proofness to select “reasonable” equilibria (Callander, Lambert, and Matouschek,

2021; Aybas and Callander, 2024; Farina et al., 2024). We contribute by providing a

general characterization of and existence conditions for this solution concept.

Second, our paper relates to the literature on belief-based refinements for cheap

talk games that includes announcement proofness (Matthews, Okuno-Fujiwara, and

Postlewaite, 1991), undefeated equilibria (Mailath, Okuno-Fujiwara, and Postlewaite,

1993), with the closest analogue being neologism proofness (Farrell, 1993). These

papers, along with Bertomeu and Cianciaruso (2018) who adopt neologism proofness

to disclosure games, rule out deviations to a single off-path message. We rule out

coalitional deviations to mixed strategies and messages used on path, and that allows

us obtain stronger results. Our findings are also related to Koessler and Skreta (2023)

who study informed information design and apply a related selection criterion that
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they term interim sender optimality. We discuss this literature, along with Hart,

Kremer, and Perry (2017), in more detail in Section 6.

Third, there are two papers that provide algorithmic equilibrium characterizations

for disclosure games, Rappoport (2022) for receiver-optimal PBEs and Wu (2022) for

all PBEs but in a special case where and cheap talk is available and there is a total

order on evidence messages. Our algorithm outputs all PBEs for any game of verifiable

disclosure with type-independent preferences of the sender.

The rest of the paper proceeds as follows. We begin with two examples that

illustrate the shortcomings of receiver optimality and (ex ante) sender optimality

as equilibrium selection approaches. Section 2 introduces the model and notation.

Section 3 introduces coalition-proof PBE as a solution concept and presents a recur-

sive characterization alongside other basic results. Section 4 presents four theorems

for existence of a coalition-proof PBE. Section 5 solves the benchmark case with a

maximally rich message mapping. Section 6 discusses related papers in more detail.

Section 7 concludes. All proofs are in Appendix A.

Motivating Examples

Example 1 (Implausible revelation in receiver-optimal equilibria). A centrist incum-

bent (S) learns the state of the world θ ∈ {−1, 1} drawn from a uniform prior; she

can reveal it to the voter (R) or not by choosing message m ∈ {θ,∅}. R sees m and

elects a left-wing challenger (a = −1), a right-wing one (a = 1), or the incumbent

(a = S). S is office-motivated and gets 1a=S. R gets 1 if he matches the state (a = θ)

and 0 if not (a = −θ), but reelecting the incumbent is a safe alternative that pays 0.9.

This game has two types of (perfect Bayesian) equilibria. First, there is an equilib-

rium in which all senders send m = ∅ and get reelected. Second, there are equilibria

in which the sender is reelected with probability 0. In these equilibria, the empty

message is either never sent (but interpreted by R as coming disproportionately from

one type off-path) or sent disproportionately by one sender type.

In any receiver-optimal equilibrium, S reveals θ w.p. 1 and R’s posterior after

seeing the empty message, Pr(θ = 1|m = ∅), is any element of [0, 0.1] ∪ [0.9, 1].

R extracts full revelation from S by threatening to interpret the off-path message

asymmetrically, despite both sender types having identical incentives to go off-path.

For S, revealing the state is weakly dominated by saying nothing: if S sends θ,
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she is never reelected and gets 0; if she sends ∅, she gets 0 at worst. Simply speaking,

anything the sender might say can be used against her. Thus, the sender could argue:

“it is in my interest to reveal no information, and I would benefit from making this

announcement regardless of the true state. Hence, you should retain your prior belief

when I reveal nothing.” In other words, the sender could announce a deviation to

m ≡ ∅, which both types would participate in.1 □

One may think that limiting the receiver’s ability to adversarially interpret devi-

ations ought to increase the sender’s payoff, so perhaps we should focus on equilibria

that are ex ante optimal for the sender. Our next example provides a counterpoint.

Example 2 (Implausible ex ante sender-optimal equilibria). Consider a Grossman

(1981) game with a “nuisance dimension.” Let Θ = {(L,A), (L,B), (H,A), (H,B)};
all 4 types are equally likely. Type θ = (θ(1), θ(2)) can send any message m ⊆ 2Θ

such that θ ∈ m. Assume R’s best response to m is a∗(m) =
√
Pr(θ(1) = H | m) −

8 [Pr(θ(2) = A | m)− 0.5]2 and S’s payoff is uS = a.

Notice that revealing θ(1) = H is good for S but revealing any information about

the second dimension hurts her. The receiver-optimal PBE outcome features full

revelation: S reveals (θ(1), θ(2)) and R interprets off-path messages adversarially. In

contrast, in the ex ante sender-optimal PBE, all types pool on m = Θ and get uS =√
0.5. Off the path, R thinks that message m ∈ {(H,A), (H,B)} is disproportionally

likely to be sent by a single type, much like in Example 1.

Next, consider a simpler game with the second dimension θ(2) removed.2 Now,

there is a unique PBE in which H separates from L, and the types get 1 and 0,

respectively. S’s ex ante utility is now 0.5, lower than the pooling payoff of
√
0.5.

We argue that a natural equilibrium in Example 2 should mirror this outcome: types

(H,A), (H,B) should “form a coalition” (send message m = {(H,A), (H,B)} thus

separating themselves from other types) to get the highest payoff in the game. More

generally, when S has incentives to reveal some dimensions of the state but not others,

then that should be the equilibrium outcome. □

1Refinements such as the intuitive criterion or D1 are not helpful here, as they generally give conditions
to rule out certain types as potential deviators. Our argument is that multiple sender types are all
equally plausible deviators.

2That is, now Θ = {L,H} (equally likely) and a∗(m) =
√
Pr(θ = H | m).
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2 Model

There are two players, a sender (S, she/her) and a receiver (R, he/him). The game

proceeds as follows. First, S observes her type θ ∈ Θ := {θ1, . . . , θn}, which is drawn

from a common prior distribution µ0 := (µ0
1, . . . , µ

0
n) ∈ ∆Θ. Then, S chooses message

m ∈ M(θ), where M : Θ → 2M∖∅ is a mapping that determines the set of messages

available to type θ and M is the “grand” message space. Upon observing m, R forms

a posterior belief µ ∈ ∆Θ and chooses action a ∈ A. Finally, payoffs uS(a) and

uR(a, θ) are realized. Note that the sender’s preferences are type-independent and

only depend on R’s action.

We employ the belief-based approach that is common in the information design

literature. Specifically, we let µ ∈ ∆Θ be R’s posterior belief, a∗(µ) be R’s best

response, and v(µ) := uS(a
∗(µ)) be S’s payoff when R has that belief. For much of

the paper, we assume without loss that R breaks ties in favor of S when indifferent,

which leads to v being upper semicontinuous under mild assumptions.3 We thus

forget about R as a player and work with an upper semicontinuous function v. A

more careful tie-breaking is required for some of our results; we make it clear then and

treat v as a correspondence returning all possible values of uS when R best-responds.

Next, we introduce some helpful notation. Given a set of messages X ⊆ M,

we let M−1(X) := {θ ∈ Θ | M(θ) ∩ X ̸= ∅} be the set of types with access to

at least one message in X. Also, given a non-empty set of types C ⊆ Θ, we let

µ0(C) :=
∑

i∈C µ0(θi) be the prior measure of C and µ0
C ∈ ∆Θ the prior distribution

conditional on C defined as µ0
C(θ) :=

µ0(θ)·1(θ∈C)
µ0(C)

for all θ ∈ Θ. In our analysis, we often

consider a restricted game with a non-empty type space Θ̃ ⊆ Θ, prior distribution µ0
Θ̃

and message mapping M |Θ̃, which is simply M restricted to the domain Θ̃.4

Coalitions and Partitions

We introduce a new object that we term a partition and focus on a particular class of

strategies that we term partition strategies. These strategies partition the type space

3v is upper semicontinuous if R breaks ties in favor of S and there is a metric on A under which A
is compact and uS(a), uR(a, θi) are continuous in a for each i (see Lemma 3). In particular, this
condition holds if A is a compact subset of Rk; it also holds automatically for any finite A as we can
take the discrete metric on A.

4That is, M |Θ̃ : Θ̃ → 2M ∖∅ is given by M |Θ̃(θ) = M(θ) for all θ ∈ Θ̃.
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Θ into coalitions of sender types that get the same payoff and send messages that are

only available to them.

Definition 1. A coalition is a quadruple (C,X, σ, w), where

1. C ⊆ Θ is a non-empty set of types.

2. X ⊆ M is a set of messages such that M−1(X) = C.

3. σ : C → ∆M is a sender strategy for types θ ∈ C such that supp σ(· | θ) ⊆
X ∩M(θ) for all θ ∈ C and

⋃
θ∈C

supp σ(· | θ) = X.

4. w := v(µ(· | m)) for each m ∈ X, where µ(· | m) is calculated from µ0, given σ,

using Bayes’ rule.

Coalitions have two important features. First, a coalition strategy σ only specifies

what types in C do. In particular, every type θ ∈ C uses messages from X ∩M(θ);

all messages in X are “on path.” While σ does not specify what types in Θ∖ C do,

we know that they do not have access to messages in X. Second, although different

messages in X may induce different posteriors, the sender’s payoff is the same for

all of them. In particular, types in the coalition receive the same payoff and are

indifferent between all the messages m ∈ X ∩M(θ).

Remark 1. Let C(Θ̃) be the set of coalitions of the restricted game with a non-empty

type space Θ̃ ⊆ Θ. Then, C(Θ̃) is non-empty.

Proof. Let m ∈
⋃
θ∈Θ̃

M(θ) be a message; C = (M |Θ̃)−1({m}) be the non-empty set

of types with access to it; σ(m | θ) = 1 for θ ∈ C be the strategy prescribing that

everyone in Θ̃ who can send m does so. Then, (C, {m}, σ, v(µ0
C)) is a coalition.

While the existence of coalitions that pool on a single message is clear, there may

also exist coalitions that pool on a larger set of messages. Next, we recursively define

a partition and provide an algorithm that outputs them.

Definition 2. A collection {(Ct, Xt, σt, wt)}Tt=1 is a partition if

• C1, . . ., CT are disjoint and Θ =
⋃T

t=1Ct;

• for each t ∈ {1, . . . , T}, (Ct, Xt, σt, wt) is a coalition of the restricted game with

type space Θt := Ct ∪ . . . ∪ CT , or (Ct, Xt, σt, wt) ∈ C(Θt).
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Algorithm 1: Partition Algorithm

Let t := 1 and Θ1 := Θ;

while Θt ̸= ∅
let (Ct, Xt, σt, wt) ∈ C(Θt);

let Θt+1 := Θt ∖ Ct and t := t+ 1;

end

We will refer to each (Ct, Xt, σt, wt) simply as a coalition when there is no possi-

bility of confusion, although generally (for t > 1) it is not a coalition of the original

game. Since Θ is finite and each Ct contains at least one type, Algorithm 1 terminates

in at most |Θ| steps. Furthermore, the set of partitions is non-empty since Remark 1

ensures existence of a coalition at each step of the algorithm. When the algorithm

terminates, {σt}Tt=1 specifies the strategy for all sender types θ ∈ Θ and R’s posterior

beliefs for all on-path messages.

Definition 3. σ : Θ → ∆M is a partition strategy if, for some partition

{(Ct, Xt, σt, wt)}Tt=1, we have σ|Ct = σt for all t ∈ {1, . . . , T}. We say that σ is

associated with {(Ct, Xt, σt, wt)}Tt=1.

3 Analysis

PBE Partitions and Individual Rationality

The standard solution concept for communication games is perfect Bayesian equilib-

rium (PBE). We say that a Sender’s strategy σ : Θ → ∆M is a PBE strategy if there

exists a Receiver’s belief system µ : M → ∆Θ such that

(PBE-1) ∀θ ∈ Θ, σ(· | θ) is supported on arg max
m∈M(θ)

v(µ(· | m));

(PBE-2) µ is obtained from µ0, given m, using Bayes’ rule, for all m on equilibrium path.

For m off path, µ(· | m) can be any feasible belief.

The set of feasible beliefs µ(·|m) for a message m is the set ∆M−1({m}) if all types in
M−1({m}) have access to more than one message. More generally, it is the set of all

beliefs proportional to (µ0
iσi)θi∈M−1({m}) for any σi ∈ [0, 1] if |M(θi)| > 1 and σi = 1

if M(θi) = {m}.
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We begin by characterizing the set of PBE strategies in terms of partitions. Con-

sider a partition {(Ct, Xt, σt, wt)}Tt=1 and the associated strategy σ. For σ to be a

PBE strategy, S must not have profitable deviations to on-path or off-path messages.

At the very least, the sender’s payoff must exceed his best deviation to any off-path

message assuming that R is maximally skeptical.

Definition 4. A partition {(Ct, Xt, σt, wt)}Tt=1 is individually rational (IR) if

wt ≥ v(θ) := max
m∈M(θ)

min
µ(·|m) feasible

v(µ(·|m)) for all t ∈ {1, . . . , T} and θ ∈ Ct.

Our first result is an equilibrium characterization in terms of partition strategies.

We show that all PBE strategies are partition strategies. Given a strategy associated

with partition {(Ct, Xt, σt, wt)}Tt=1, sender deviations on path are ruled out as long as

wt is decreasing; sender deviations off path are ruled out by IR.

Proposition 1. σ is a PBE strategy ⇐⇒ σ is associated with an individually

rational partition {(Ct, Xt, σt, wt)}Tt=1 such that w1 ≥ . . . ≥ wT .

Using Proposition 1, we modify Algorithm 1 to return all PBE partitions (those

satisfying IR and decreasing payoffs) and hence all PBE strategies.

Algorithm 2: PBE Partition Algorithm

Let t := 1, Θ1 := Θ, and w0 := ∞;

while Θt ̸= ∅

let (Ct, Xt, σt, wt) ∈ C(Θt) be a coalition such that wt ∈ [max
θ∈Θt

v(θ), wt−1];

let Θt+1 := Θt ∖ Ct and t := t+ 1;

end

In words, at each step of the algorithm, we select coalitions such that payoffs are

non-increasing (wt−1 ≥ wt) and that satisfy individual rationality (wt ≥ max
θ∈Θt

v(θ)).5

5The IR requirement on θ ∈ Ct is wt ≥ max
θ∈Ct

v(θ) rather than wt ≥ max
θ∈Θt

v(θ). However, the latter

requirement yields the same set of partitions because if max
θ∈Ct

≤ wt < max
θ∈Θt

v(θ), then a failure of IR

is inevitable: there is θ̃ ∈ Θt ∖ Ct with v(θ) > wt, and this type must be included in a coalition
(Cτ , Xτ , στ , wτ ) with τ > t, so v(θ) > wt ≥ wτ .
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Unlike Algorithm 1, Algorithm 2 may not terminate: depending on coalitions se-

lected at earlier steps, there may not exist a coalition at step t with payoff wt ∈
[max
θ∈Θt

v(θ), wt−1]. When that happens, we say that the algorithm halts with no out-

put. Of course, since a PBE must exist (by Fan-Glicksberg), there is at least one way

to select coalitions at each step so that the algorithm terminates.

Coalition Proofness

Our proposed criterion to select among strategies is coalition proofness. Here we

define this concept, characterize coalition-proof PBE and provide a modification of

Algorithm 2 that returns all coalition-proof PBE strategies.

Definition 5. Let σ be a strategy associated with partition {(Ct, Xt, σt, wt)}Tt=1.

(i) (C̃, X̃, σ̃, w̃) is a blocking coalition of σ if it is a coalition of the restricted game

with type space
⋃

t:wt<w̃

Ct.

(ii) σ is coalition-proof if there are no blocking coalitions.

Intuitively, a strategy σ is coalition-proof if it rules out coalitional deviations. A

coalitional deviation involves a set of types C̃ announcing that they would like to

switch to a message strategy σ̃ with domain C̃ and codomain X̃, such that if the

receiver believed this announcement and updated his beliefs accordingly in response

to messages in X̃, the types in C̃ would obtain payoff w̃ from the deviation. For this

announcement to be credible, the participating types in C̃ must be exactly those who

have access to at least one message in X̃ and benefit from the deviation.6

An issue that needs careful consideration is that the messages that the deviators

mean to use may already be used on path. In such cases, it is unclear how the receiver

should interpret the announcement (C̃, X̃, σ̃, w̃) followed by a message m ∈ X̃: does

it come from a deviator, or from an on-path user? The following remark confirms that

announced deviations to on-path messages do not cause any ambiguity. Specifically,

R should expect all types using m on path to participate in the announced deviation

6The notion of coalition proofness can be extended to non-partitional strategies. In the general case,
types are presumed to participate in a deviation iff their expected equilibrium payoff is less than w̃.
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because their equilibrium payoff is strictly less than w̃.7

Remark 2. Let σ be a PBE strategy associated with partition {(Ct, Xt, σt, wt)}Tt=1

and let (C̃, X̃, σ̃, w̃) be a blocking coalition. Then, M−1(X̃ ∩Xt) ∩ Ct ⊆ C̃ for all t.

Now, we introduce a modification of the PBE Partition Algorithm that selects a

payoff-maximizing coalition at each stage. We refer to outputs of this algorithm as

greedy partitions. Our next result, Proposition 2, establishes that Algorithm 3 returns

all PBE strategies that are coalition-proof.

Algorithm 3: Greedy Partition Algorithm

Let t := 1, Θ1 := Θ, and w0 := ∞;

while Θt ̸= ∅
let Wt = {w ∈ R | ∃(C,X, σ, w) ∈ C(Θt)} be the set of payoffs attainable
by coalitions of the restricted game with type space Θt;

let (Ct, Xt, σt, wt) ∈ C(Θt) be such that wt = max(Wt ∩ [max
θ∈Θt

v(θ), wt−1]);

let Θt+1 := Θt ∖ Ct and t := t+ 1;

end

Proposition 2. Consider a partition strategy σ associated with {(Ct, Xt, σt, wt)}Tt=1.

Then, σ is a PBE strategy and coalition-proof if and only if {(Ct, Xt, σt, wt)}Tt=1 is a

greedy partition.

As might be expected from the literature on neologism proofness, coalition-proof

PBEs do not always exist, meaning that Algorithm 3 may halt no matter what choices

are made at each step. We now provide a minimal example of non-existence.8

Example 3 (Non-existence of coalition-proof PBE). Let Θ = {1, 2, 3}. Let M(1) =

{a, b}, M(2) = {a}, M(3) = {b}, µ0 =
(
1
3
, 1
3
, 1
3

)
. Let v : ∆Θ → R be any continuous

function such that v (x, 1− x, 0) ≡ x, v (x, 0, 1− x) ≡ 0.9 − x for all x ∈ [0, 0.5], as

illustrated in Figure 1.

7A related issue that motivates the concept of announcement proofness (Matthews, Okuno-Fujiwara,
and Postlewaite, 1991), is that if multiple blocking coalitions exist, a potential deviator may consider
joining only the best blocking coalition(s) he has access to. This is not a concern in our setting as
senders with type-independent preferences share a common ranking over blocking coalitions.

8Example 3 uses three sender types. It can be shown that a coalition-proof PBE always exists with
two types under only technical conditions on v.
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Figure 1. Feasible sender payoffs in Example 3. Type 2 must send message a
(blue), while type 3 must send message b (red). Type 1 has access to both messages.

Example 3 has a unique PBE, which is not coalition-proof. To see why, fol-

low Algorithm 2. The possible coalitions at step 1 are (i) X1 = {b}, C1 = {1, 3},
σ1(b | 1, 3) = 1, w1 = v(0.5, 0, 0.5) = 0.4 and (ii) X1 = {a}, C1 = {1, 2}, σ1(a | 1, 2) =
1, w1 = v(0.5, 0.5, 0) = 0.5. There is no coalition with X1 = {a, b} because no mixed

strategy for type 1 equalizes the payoffs of messages a and b. Hence, W1 = {0.4, 0.5}.
Now, if the coalition ({1, 3}, {b}, ·, 0.4) is chosen at step 1, then the only possible

coalition at step 2 is ({2}, {a}, ·, 0). The associated strategy is a PBE strategy but

not coalition-proof since 0.4 < maxW1; the blocking coalition is ({1, 2}, {a}, ·, 0.5).
However, choosing ({1, 2}, {a}, ·, 0.5) at step 1 leaves only one possible coalition at

step 2: ({3}, {b}, ·, 0.9); the associated strategy is not a PBE strategy as type 1 has

a profitable deviation to message b. □

Although coalition-proof PBEs can fail to exist, we show next that they exist

under relatively weak conditions, covering many settings studied previously in the

disclosure literature.

4 Theorems for Existence of Coalition-Proof PBE

We provide four sets of conditions on the sender’s payoff function v and the message

mapping M that guarantee existence of a coalition-proof PBE. We also establish

additional conditions under which Algorithm 3 always terminates, and the coalition-

proof PBE is unique.
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Quasiconcavity of v and Completeness of M

The first existence condition is that v is quasiconcave (QC; we denote strict quasi-

concavity by QC*) and M is complete (M-C).

(QC) For all α ∈ (0, 1) and µ, µ′ ∈ ∆Θ, min{v(µ), v(µ′)} ≤ v(αµ+ (1− α)µ′).

(QC∗) For all α ∈ (0, 1) and µ, µ′ ∈ ∆Θ, min{v(µ), v(µ′)} < v(αµ+ (1− α)µ′).

(M-C) For any two messages m,m′ ∈ M, there exists m′′ ∈ M such that

M−1({m′′}) = M−1({m}) ∪M−1({m′}).

Completeness of the message mapping requires that the collection of types that can

pool together on a single message—that is, the collection {M−1({m}) : m ∈ M}—is

closed under unions. In other words, if message m means “my type is in A”, and mes-

sage m′ means “my type is in B” (where A = M−1({m}) and B = M−1({m′})), then
there is a way to say “my type is in A or B”. Under these conditions, the following

lemma allows us to effectively restrict attention to simple “pooling” coalitions.

Lemma 1. If QC and M-C hold, then for any coalition (C,X, σ, w), there is a coali-

tion (C, {m}, σ̃, w̃) with M−1({m}) = C, σ̃(m | C) = 1 and w̃ = v(µ0
C) ≥ w.

Proof. Consider a coalition (C, {m}, σ̃, w̃). By M-C, there exists a message m such

that M−1({m}) = M−1(X) = C and a coalition (C, {m}, ·, v(µ0
C)). Since µ0

C is a

linear combination of the posteriors µ(· | m) generated by m ∈ X under σ, by QC,

v(µ0
C) ≥ min

m∈X
v(µ(· | m))︸ ︷︷ ︸
=w for all m∈X

= w.

QC and M-C guarantee existence of a coalition-proof PBE, and adding QC* en-

sures that every way of choosing coalitions in Algorithm 3 terminates.

Theorem 1.

(i) If QC and M-C hold, then there exists a coalition-proof PBE.

(ii) If QC∗ and M-C hold, then Algorithm 3 always terminates.

(iii) If QC and M-C hold and v is generic (such that v(µ0
C) = v(µ0

C′) only if C = C ′),

then all coalition-proof PBE are payoff-equivalent.
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To prove this result, we show that maxWt ≤ wt−1 at each step of Algorithm 3, so

that picking a payoff-maximizing coalition (one with wt = maxWt) guarantees coali-

tion proofness and ensures that the resulting partition has a non-increasing sequence

of payoffs, as required for PBE. We prove that by contradiction: if a coalition paying

more than wt−1 exists at step t, then we can “merge” it with the coalition obtained

at step t − 1 to obtain a feasible coalition for step t − 1 that pays more than wt−1.

M-C ensures existence of messages that pool types in Ct−1 and Ct together, while

QC guarantees that those types receive a higher payoff from the merged coalition.

Finally, when v is generic (i.e., no two “pooling” coalitions pay the same), there is at

most one choice of Ct at each step that maximizes wt, yielding the uniqueness result.

Betweenness of v

The second existence condition is “betweenness” of v (v is quasiconcave and quasi-

convex) and involves no restriction on M .9

(B) for all α ∈ (0, 1) and µ, µ′ ∈ ∆Θ,

min{v(µ), v(µ′)} ≤ v(αµ+ (1− α)µ′) ≤ max{v(µ), v(µ′)}.

(B∗) B holds and for all α ∈ (0, 1) and µ, µ′ ∈ ∆Θ such that v(µ) ̸= v(µ′),

min{v(µ), v(µ′)} < v(αµ+ (1− α)µ′) < max{v(µ), v(µ′)}.

A key observation is that if v satisfies betweenness, then all types in a coalition

must receive their pooling payoff even if they pool by mixing across multiple messages,

and even if there does not exist a single message available to all of them.

Lemma 2. If B holds, then w = v(µ0
C) for any coalition (C,X, σ, w).

Proof. Let (C,X, σ, w) be a coalition. Then µ0
C is a linear combination of µ(· | m)

9Hart, Kremer, and Perry (2017) (HKP henceforth) provide a compelling microfoundation of be-
tweenness: it holds if the receiver’s expected utility Eµ(uR(a, θ)) is single-peaked in her action a,
for any belief µ ∈ ∆Θ. When Θ is binary, B (B∗) is equivalent to v(µ) being (strictly) monotone.
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for m ∈ X. From B,

min
m∈X

v(µ(· | m))︸ ︷︷ ︸
=w for all m∈X

≤ v(µ0
C) ≤ max

m∈X
v(µ(· | m))︸ ︷︷ ︸
=w for all m∈X

=⇒ v(µ0
C) = w.

In analogous fashion to Theorem 1, betweenness of v guarantees existence of a

coalition-proof PBE; strict betweenness guarantees that every way of choosing coali-

tions in Algorithm 3 yields a coalition-proof PBE; and the coalition-proof PBE is

essentially unique when v is generic.

Theorem 2.

(i) If B holds, then there exists a coalition-proof PBE.

(ii) If B∗ holds, then Algorithm 3 always terminates.

(iii) If B holds and v is generic (that is, v(µ0
C) = v(µ0

C′) only if C = C ′), then all

coalition-proof PBE are payoff-equivalent.

The proof is similar to the proof of Theorem 1: we show, by contradiction, that

maxWt ≤ wt−1 at each step of Algorithm 3. We can no longer “merge” coalitions

to arrive at a contradiction because no condition on M is assumed. However, con-

dition B gives us enough structure on v to prove that, if two successive coalitions

(Ct−1, Xt−1, σt−1, wt−1) and (Ct, Xt, σt, wt) satisfy wt−1 < wt, then there must exist

some coalition at step t− 1 that pays at least v(µ0
Ct−1∪Ct

) ∈ (wt−1, wt).

Adding Cheap Talk

The last two existence conditions apply when the sender has access to cheap talk as

well as evidence. Formally, the mapping M : Θ → 2M ∖ ∅ satisfies the cheap talk

property if

(M-CT) for each message m ∈ M, there exist at least n messages m′ ∈ M (including

m) such that M−1({m′}) = M−1({m}).

We call M-CT the cheap talk property because it allows us to rewrite the message

space as follows. Let two messages m, m′ be equivalent if M−1({m}) = M−1({m′})
and denote the equivalence class of m by m̃. Then, each message m maps to a pair
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(m̃, j), where m̃ is the verifiable content of m and j = 1, 2, . . . , Jm̃, the index denoting

which “copy” of m̃ was sent, is cheap talk. Conversely, any message mapping M can

be augmented to allow S to send cheap talk in addition to evidence.

When cheap talk is available, useful equilibria may be lost if R always breaks ties

in favor of the sender (the same issue shows up in Lipnowski and Ravid, 2020). Hence,

in this section, we treat v as an upper hemicontinuous, compact and convex-valued

correspondence that returns all possible sender payoffs when R best-responds to µ.10

Condition 4 in Definition 1 of a coalition then becomes w ∈ v(µ(· | m)) for each

m ∈ X. We let v(µ) := max(v(µ)) and v̌(µ) := min(v(µ)) for each µ.

Our third existence condition requires that M is complete and satisfies the cheap

talk property, with no further restrictions on v.

Theorem 3. Suppose that

• v is an upper hemicontinuous, compact and convex-valued correspondence;

• M satisfies M-C and M-CT.

Then, there exists a coalition-proof PBE.

The gist of the proof is simple. Using Theorem 1, we first find a coalition-proof

PBE of a modified game with the same message mapping and the sender’s payoff

being the quasiconcave closure of v rather than v itself. We then show that cheap

talk can be used to reconstruct the same equilibrium in the original game. The

result is related to Lipnowski and Ravid (2020)’s insight that cheap talk effectively

quasiconcavifies the sender’s payoff function. In particular, whenM allows only cheap

talk (i.e., M−1({m}) = Θ for all m ∈ M), the unique coalition-proof PBE is simply

the sender-optimal PBE found by Lipnowski and Ravid (2020).

Our fourth existence condition is that M satisfies the cheap talk property and

giving full information to the receiver is (potentially) bad for the sender:

Theorem 4. Suppose that

• v is an upper hemicontinuous, compact and convex-valued correspondence;

• M satisfies M-CT;

10Again, these properties of v follow under mild assumptions on uS , uR and A (Lemma 3).
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• v̌(µ0
{θ}) = min

µ∈∆Θ
v̌(µ) for all θ ∈ Θ.

Then, there exists a coalition-proof PBE.

The idea behind Theorem 4 is as follows. Recall that Algorithm 3 only ever halts at

step t when the set Wt∩[max
θ∈Θt

v(θ), wt−1] is empty, which can only happen if maxWt >

wt−1. Under the conditions of Theorem 4 we can continuously “degrade” a coalition

that pays maxWt by adding cheap talk messages that bring R’s posterior closer to

complete information. We can calibrate this leakage of information to produce a

coalition that pays exactly wt−1, which must be a valid choice in Algorithm 3.11

We finish this section with three observations. First, note that Theorem 2 provides

sufficient conditions for existence that only constrain the payoff function v, while

Theorem 3 provides sufficient conditions that only constrain the message mapping

M . Second, our results are relatively “tight”: continuity and quasiconcavity of v,

evidence structure on M (Hart, Kremer, and Perry, 2017) and availability of cheap

talk (which makes no difference if v is quasiconcave) are not jointly sufficient for

existence of a coalition-proof PBE. Example 3 illustrates this point.12 Third, any

coalition-proof PBE partition {(Ct, Xt, σt, wt)}Tt=1 must be lexicographically maximal

in the following sense: w1 is the maximal payoff obtained across all PBEs; w2 is the

maximal payoff obtained in any PBE with (C1, X1, σ1, w1) as its first coalition; and

so on. Then, even when coalition-proof PBE fails to exist, it may be reasonable to

focus on lexicographically maximal PBEs, which of course always exist.13

5 Rich Message Spaces

This section provides an explicit characterization of coalition-proof PBE when the

message space is maximally “rich”. In particular, we not only require there to be a

message that allows any set of types to pool together and separate from others (as

11The same logic would apply if some messages were costlier than others, and S could voluntarily
increase the cost of a message—a form of burning money.

12We can modify Example 3 to add a revealing message for type 1 and a payoff v(1, 0, 0) so that M
has evidence structure and v is quasiconcave, and there are still no coalition-proof PBE.

13Mailath, Okuno-Fujiwara, and Postlewaite (1993) propose a related selection criterion for signaling
games, undefeated equilibrium, and show that the lexicographically maximal PBE is undefeated.
However, their assumptions do not map well into ours: they require that messages affect payoffs in
a particular way and that v is continuous and FOSD-monotonic in µ.
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in Grossman (1981) and Milgrom (1981), where any subset m ⊆ Θ such that θ ∈ m

is a valid message) but also that fractions of each type can pool, while excluding

otherwise identical copies of themselves.14

To accommodate this formally, we begin with an upper semicontinuous sender

payoff function v(µ) and a finite “payoff-relevant” type space Θ, as in Section 2. We

then take the actual type space of our game to be Ω := Θ× [0, 1], and assume that,

for each nonzero vector (p1, . . . , pn) ∈ [0, 1]n, there is a message m available precisely

to all types (θi, j) with j ≤ pi (hence, “a fraction pi of senders of type θi”). Note

that j is payoff-irrelevant for both S and R. However, types (θi, j) with lower j may

attain higher payoffs because they have access to more messages.

Since only the first dimension of the sender’s type matters to the receiver, it is

useful to denote a distribution over sender types by µ ∈ ∆Ω and let µ ∈ ∆Θ be the

marginal distribution of θ given µ. For any subset C ⊆ Θ, we denote by µ∗C the

argmax of v(µ) subject to the constraint supp µ ⊆ C.

We proceed to characterize the coalition-proof PBE of this game. While our pre-

vious existence results do not directly apply to this game (because the type space Ω is

infinite), a coalition-proof PBE does exist, and its payoffs can be tightly characterized

under a genericity assumption.

Proposition 3. In the model with a rich message space,

(i) there exists a coalition-proof PBE;

(ii) Algorithm 3 never halts. Moreover, if restricted to choosing coalitions of maxi-

mal size, it always terminates in at most n steps;

(iii) in any coalition-proof PBE written as a finite partition {(Ct, Xt, σt, wt)}Tt=1,

every coalition obtains payoff wt = v(µ∗C) for C = supp (µ0
Ωt
) ⊆ Θ;

(iv) if v is generic (µ∗C is a singleton for every C ⊆ Θ), then all coalition-proof

PBEs are payoff-equivalent.

Parts (i) and (ii) are existence results. Part (iii) describes the structure of

coalition-proof PBEs. It establishes that every sender type (θ, j) who is in a coalition

(Ct, Xt, σt, wt) must receive the highest payoff attainable by the types left in stage t,

14This type of flexibility would add nothing if v(µ) depended only on Eµ(θ) as in Milgrom (1981), or
more generally if v satisfied B∗; but it is useful for the sender when v is general.
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i.e., by the set C of θ ∈ Θ that are represented in Ωt. Indeed, if positive masses of

each θ ∈ C are still left, some fractions of them can pool appropriately to induce a

constrained-optimal posterior µ ∈ µ∗C . And, in a coalition-proof PBE, they must do

so. Part (iv) gives us uniqueness: there is effectively a unique coalition-proof PBE if

there is a unique maximizer of v(µ)|∆C for each C, which holds for “almost all” v.

Proposition 3.(iii) and its proof also provide a recipe for constructing coalition-

proof PBEs, which we sketch here. Figure 2 provides an example with three types.

µ∗{θ1} µ∗{θ2}µ∗{θ1,θ2}

µ∗Θ

µ∗{θ3}

µ∗{θ1,θ3}

µ∗{θ2,θ3}

µ0µ0

µ1

Figure 2. Posterior beliefs in a coalition-proof PBE of a game with a rich message
space.

First, find the largest sender payoff in the game. We claim that the first coalition

reaches this payoff and, without loss, fully removes some θ ∈ Θ from the game.

Indeed, by (iii), the first coalition must get w1 = v(µ∗Θ). To do so, it must induce a

belief µ∗1 ∈ µ∗Θ. This can be done with a message m1 such that µ0
M−1({m}) = µ∗1, i.e.,

by setting pi = λ
µ∗1
i

µ0
i
for all i, for some λ > 0. If choosing coalitions of maximal size

[(ii)], we must pick the highest feasible λ such that pi ≤ 1 for all i, i.e., λ = min
j

µ0
j

µ∗1
j
.

The first coalition is then (M−1({m1}), {m1}, ·, v(µ∗1)), and Ω2 = Ω∖ (M−1({m1}).
Since λ is maximal, we have pi = 1 for some i, so (θi, j) participates in this coalition

for all j, i.e., θi is fully removed in step 1.15 To simplify exposition, suppose that

pi = 1 for a single i and without loss assume that i = n. Let Θ2 = {θ1, . . . , θn−1}. In
Figure 2, µ∗1 = µ∗Θ is the posterior induced by the first coalition; θ3 is removed from

15If not choosing coalitions of maximal size, all coalitions formed until type θi is fully removed from
the game must get the payoff v(µ∗Θ); all coalitions attaining this payoff can then be merged ex post.
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the game at step 1, and the residual posterior µ1 is supported on θ1 and θ2.

Let µ2 = µ0
Ω2

be R’s posterior (over types (θ, j) ∈ Ω) conditional on not receiving

message m1. By construction, µ2 := µ0
Ω2

∈ ∆Θ2 is proportional to µ0 − λµ∗1. We

repeat the same construction, with µ∗2 ∈ arg max
µ∈∆Θ2

v(µ): since all θn-senders were

removed in stage 1, the best the remaining types can do is induce the posterior µ∗2.

We repeat until all types are assigned to a coalition. Thus, if θn−1 senders are

fully removed in stage 2, then Θ3 = {θ1, . . . , θn−2} and µ∗3 ∈ argmaxµ∈∆Θ3
v(µ), and

so on. The algorithm terminates in at most |Θ| steps. The equilibrium is effectively

unique if the argmax at each step is unique.

Existing literature has characterized the ex ante sender payoffs attainable under

Bayesian persuasion (Kamenica and Gentzkow, 2011) and cheap talk (Lipnowski and

Ravid, 2020) with general state-independent sender payoff v(µ) and an arbitrary prior

belief µ0. In Bayesian persuasion, the sender attains vC(µ0), the value of the concave

closure of v evaluated at the prior, while under cheap talk she attains (at most)

vQC(µ0), the value of the quasiconcave envelope. An analogous characterization for

games of disclosure with general sender payoff v is not available in the literature.

Assuming as in Proposition 3.(iv) that the argmax of v(µ) subject to supp µ ⊆ C

is unique for all C ⊆ Θ, we now characterize the (unique) ex ante payoff of the sender

in a coalition-proof PBE, vtent(µ0), as a function of the prior µ0. The function vtent(·),
which we call the tent of v, admits a geometric characterization.

Proposition 4. If every µ∗C is a singleton, then the sender’s ex ante payoff given

prior µ0 is vtent(µ0). vtent is the unique function such that:

• vtent(µ∗C) = v(µ∗C) for all C ⊆ Θ;

• for each permutation (θi1, . . . , θin) of Θ, vtent is linear when restricted to

conv(µ∗Θ, µ∗{θi1,...,θi(n−1)}, . . . , µ∗{θi1}).

The result is illustrated in Figure 3 for the case of two types, θ1 and θ2. By an

abuse of notation, we denote Pr(θ = θ2) by µ. On both sides of the figure, v is

single-peaked with a peak at µ∗. In a coalition-proof PBE, at least one of these types

must attain the optimal payoff v(µ∗) with probability 1. Indeed, were this not the

case, a group of θ1-senders and θ2-senders in the correct proportion could deviate to

a message giving them payoff v(µ∗).

If µ0 = µ∗, then both types obtain this payoff with probability 1, so vtent(µ∗) =

v(µ∗). If µ0 > µ∗, so that θ2 is more numerous than needed to produce the optimal
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µ0

0 1µ∗

v(µ)

(a) Sender does as well in CP-PBE as in BP;
better than cheap talk.

µ0

0 1µ∗

v(µ)

(b) Sender does worse in CP-PBE than in BP
and cheap talk.

Figure 3. Coalition-proof PBE with two types of Sender and rich message space.

posterior µ∗, all θ1-senders will pool with some θ2-senders, in the correct proportion

to induce the posterior µ∗. The “leftover” θ2 types are forced to receive the payoff

v(1), as their type is effectively revealed. If µ0 is close to 1, then almost all θ2-senders

are unable to pool with θ1 senders, so vtent(µ0) is close to v(1). As µ0 increases

from µ∗ to 1, vtent(µ0) decreases linearly from v(µ∗) to v(1), as in fact vtent(µ0) =

v(µ∗)
(
1− µ0 + µ∗

1−µ∗ (1− µ0)
)
+ v(1)

(
µ0 − µ∗

1−µ∗ (1− µ0)
)
, which is linear in µ0. By

similar logic, for µ0 < µ∗, there are “excess” θ1 senders, so all θ2 senders get to pool

with some θ1 senders and obtain v(µ∗), while the leftover θ1 senders get v(0). v
tent(µ0)

varies linearly between v(0) and v(µ∗), creating the “tent” shape seen in Figure 3.

Clearly, payoffs in a coalition-proof PBE depend only on the “peaks” of the payoff

function v and the prior µ0. Indeed, as seen on Figure 3.(b), changing the payoff

function to make it concave leaves payoffs unaffected if the peaks (i.e., v(0), v(µ∗),

v(1), and the fact that µ∗ = argmax v) are unchanged. Note that when v is convex

on either side of the peak, as in Figure 3.(a), vtent coincides with the concave closure

of v, so S does as well in a coalition-proof PBE as when he has commitment power,

and better than cheap talk (which would be uninformative). On the other hand, as

seen in Figure 3.(b), the sender’s ex ante payoff in a coalition-proof PBE can be also

be lower than with cheap talk, Bayesian persuasion, or no communication at all. The

reason is that there is no “loyalty” across sender types: types who can get the highest

payoff v(µ∗) will do so even if it hurts other types and even ex ante payoffs.

Figure 4 further illustrates how the tent of v is constructed in the three-type

example from Figure 2. There is an (interior) optimal belief µ∗; three beliefs µ∗{θ1,θ2},
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Pr(θ = θ1)

Pr(θ = θ2)

V

µ∗
1

µ∗
2

µ∗
3

µ∗
12

µ∗
13

µ∗
23

µ∗

Figure 4. Tent of v with three types. We denote µ∗{θi,θj} = µ∗
ij and µ∗{θi} = µ∗

i .

µ∗{θ1,θ3}, µ∗{θ2,θ3} that are optimal constrained to supp µ ⊆ {θ1, θ2}, {θ1, θ3}, {θ2, θ3}
respectively; and the corner beliefs µ∗{θ1}, µ∗{θ2}, µ∗{θ3}. These 7 beliefs (2n − 1 in

general) partition the simplex into 6 (n!) triangles (sub-simplices). Each triangle has

as vertices µ∗; one of µ∗{θ1,θ2}, µ∗{θ1,θ3}, µ∗{θ2,θ3}; and one compatible corner belief. On

each triangle, vtent is linear and equal to v on the vertices of the triangle. Thus the

graph of vtent is made up of 6 triangles joined along line segments that grow from µ∗.

6 Comparison to Existing Literature

Hart, Kremer, and Perry (2017)

Hart, Kremer, and Perry (2017) (HKP) study truth-leaning equilibria for games of

disclosure with evidence structure. Their evidence structure translates into the fol-

lowing assumptions on the message mapping.

Definition 6. The message mapping M : Θ → Θ has evidence structure if it satisfies

• θ ∈ M(θ) (reflexivity);

• if θj ∈ M(θi) and θk ∈ M(θj), then θk ∈ M(θi) (transitivity).
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HKP’s truth-leaning is an equilibrium refinement which requires that (A0) type

θ sends message θ with probability 1 if it is weakly optimal to do so, and (P0) when

the receiver hears an off-path message θ, he believes it came from type θ.

Definition 7. (σ, µ) is a truth-leaning equilibrium if it is a PBE and

(A0) ∀θ ∈ Θ, if v(µ(· | θ)) = max
m∈M(θ)

v(µ(· | m)), then σ(θ | θ) = 1;

(P0) ∀m ∈ Θ, if
∑
θ∈Θ

µ0(θ)σ(m | θ) = 0, then µ(· | m) = µ0
{m}.

HKP find that if v satisfies betweenness and M satisfies A0 and P0, then there is

a unique truth-leaning equilibrium outcome, which coincides with the unique receiver

commitment outcome (see their Theorem 1). In particular, the truth-leaning equilib-

rium is receiver-optimal. Although coalition proofness has little to do a priori with

receiver optimality, we find that the truth-leaning equilibrium is also coalition-proof

in HKP’s setting, and in fact it is essentially the only output of Algorithm 3 in most

cases—namely, whenever v satisfies strict betweenness.16

Proposition 5. If v satisfies B and M has evidence structure, then the truth-leaning

equilibrium is coalition-proof. Moreover, if B∗ is also satisfied, then every coalition-

proof PBE is payoff-equivalent to the truth-leaning equilibrium.

However, the conceptual connection between both concepts breaks down if be-

tweenness is not satisfied. The intuition is as follows: receiver-optimal equilibria

involve as much revelation (separation of sender types) as possible. When v satisfies

betweenness, high types prefer to separate from others, and coalitional deviations

ensure that any profitable opportunities to separate do not go unused. If v does not

satisfy betweenness, then higher payoffs may instead be achievable with pooling.

Bertomeu and Cianciaruso (2018)

Our notion of coalition-proof PBE generalizes Bertomeu and Cianciaruso (2018)’s

Grossman-Perry-Farrell equilibrium (GPFE). The authors also provide an algorithmic

characterization of GPFE analogous to our Algorithm 3.17 The main advantage of

16If v satisfies B but not B∗, coalition-proof PBEs that are not equivalent to the truth-leaning one
may exist. To see why, suppose R’s action is binary; R takes the high action if she believes S’s type
is “high” enough; and all types can reveal themselves. Then truth-leaning leads to full revelation,
but there may be coalition-proof PBEs where some low sender types pool with high ones.

17Note however that, while their algorithm yields a GPFE when there is one, it can terminate and
yield a non-GPFE strategy when no GPFE exists, in contrast to our Proposition 2.
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our solution concept over theirs is that we allow for mixed strategies, while GPFE

only allows coalitions of the form (M−1({m}), {m}, ·, µ0
M−1({m})). Their definition of

a coalition cannot accommodate cheap talk, nor the kind of mixing that often occurs

in HKP’s truth-leaning equilibria. As a result, they require stronger conditions than

ours to guarantee existence (for instance, a GPFE does not exist in their Example

7 which does have a coalition-proof PBE). Their Proposition 1 shows that a GPFE

exists under B + M-C; in contrast, a coalition-proof PBE exists under B (Theorem 2),

under QC +M-C (Theorem 1), as well as other conditions (Theorems 3 and 4) that do

not guarantee existence of GPFE. Our characterization results for maximally flexible

message spaces (Propositions 3 and 4) are also novel.

Other Selection Criteria Based on Coalitional Deviations

Other selection criteria for communication games in the spirit of neologism proof-

ness include announcement proofness (Matthews, Okuno-Fujiwara, and Postlewaite,

1991) and undefeated equilibrium (Mailath, Okuno-Fujiwara, and Postlewaite, 1993).

Beyond the differences discussed in footnotes 7 and 13, they (along with the afore-

mentioned paper on neologism-proofness) only allow (blocking) “coalitions” to form

using a single message.

Another selection criterion that can be viewed as coalition-based was proposed

by Koessler and Skreta (2023) in a model of mechanism design with an informed

designer.18 Their interim optimality (IO) criterion effectively rules out credible de-

viations by “coalitions” of types in any proportion, assuming a message is always

available to include these types and exclude others. Their analysis is thus related

to our Section 5 (rich message spaces), where the existence of both coalition-proof

PBE and IO mechanisms is guaranteed. However, IO imposes looser constraints than

coalition proofness. In particular, the set of IO mechanisms in their Section V is

larger than our set of coalition-proof PBEs in Section 5, and the ex ante preferred

mechanism IO∗ is generally not coalition-proof in our setting. The discrepancy arises

because Koessler and Skreta (2023)’s mechanisms allow agents to commit to mixing

over messages that are not payoff-equivalent, and agents know their type but not the

realization of their mixed message when deviating (compare with Section 5, where

18Their sender commits to a disclosure mechanism after learning his type, which makes that setup
related to models of verifiable disclosure.
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types know if they will be “excluded” from the equlibrium’s top coalition).

7 Conclusion

We show that all PBE strategies in games of verifiable disclosure are partitional in

nature. As such, it makes sense to view equilibrium refinements as ruling out coali-

tions that pay more than the equilibrium payoff, provided that the receiver correctly

interprets the coalitional deviation. Unlike the existing coalition-based refinements

such as neologism proofness, announcement proofness, undefeatedness and interim

sender optimality, we allow our blocking coalitions to form using multiple messages

(so that mixing is involved) and messages that are already on the equilibrium path.

Our flexible framework allows us to state existence results for a general class

of disclosure games, ranging from the seminal models of disclosure (Milgrom, 1981;

Grossman, 1981) to cheap talk (Lipnowski and Ravid, 2020), while also clarifying

clarifying the relationship with receiver-optimal equilibria when evidence is structured

(Hart, Kremer, and Perry, 2017). Our geometric characterization of the sender’s ex-

ante utility (the tent of the sender’s value function) is, to our knowledge, the first

analysis of a disclosure game with general state-independent sender preferences that

is comparable to the concave closure in information design (Kamenica and Gentzkow,

2011). Finally, one takeaway from Theorems 3 and 4 is that adding cheap talk to a

disclosure game—a substantively innocuous assumption—can simplify and discipline

the analysis rather than complicate it.

While Example 3 shows that some obvious candidates for stronger existence results

are false, other useful sets of sufficient conditions for existence may have escaped our

attention—for example, ones involving message mappings with evidence structure.

Furthermore, there is room for more work in not just showing existence but also

further characterizing the structure of coalition-proof PBEs under various conditions,

similarly to what we do for the case of rich message spaces in Propositions 3, 4 or 5.
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A Proofs

Lemma 3. Suppose there is a metric on A under which A is compact and uS(a),

uR(a, θi) for each i are continuous in a. Let a∗(µ) = argmax
a∈A

n∑
i=1

µiuR(a, θi) and

v(µ) = {Eρ(uS(a)) : ρ ∈ ∆a∗(µ)}. Then, v is upper hemicontinuous, compact and

convex-valued. Furthermore, v(µ) is upper semicontinuous.

Proof. By Berge’s maximum theorem, µ 7→ a∗(µ) is upper hemicontinuous, nonempty

and compact-valued. It follows that µ 7→ uS(a
∗(µ)) inherits these properties as well

since uS is continuous. Since v(µ) = Conv(uS(a
∗(µ))) for each µ (as R is always

willing to mix over best responses), v is also upper hemicontinuous, nonempty and

compact-valued, and also convex-valued.

For the semicontinuity of v, suppose for the sake of contradiction that v(µ) <

lim sup
n→∞

v(µn) for some sequence µn → µ. By taking a subsequence, we can assume

without loss that v(µn) converges to lim sup
n→∞

v(µn). Next, let â(µ) = arg max
a∈a∗(µ)

uS(a).

Since A is a compact metric space, there is a subsequence (µnk)k along which â(µnk)

converges to some a∗ ∈ A. By construction, a∗ ∈ a∗(µ), and uS(a
∗) = lim sup

n→∞
v(µn) >

v(µ), a contradiction.

Proof of Proposition 1

(=⇒): let (σ, µ) be a PBE. Given the PBE (σ, µ), let w1 = max
θ∈Θ

max
m∈M(θ)

v(µ(· | m))

be the highest equilibrium payoff across all sender types. This maximum exists

by (PBE-1) and because Θ is finite. Let X1 := {m ∈ M | v(µ(· | m)) =

w1 and
∑
θ∈Θ

σ(m | θ) > 0} be the set of on-path messages that obtain that payoff

and C1 := {θ ∈ Θ | σ(m | θ) > 0 for some m ∈ X1} be the set of types getting

that payoff. Now, for each θ ∈ C1, supp σ(· | θ) ⊆ X1 ∩ M(θ) by (PBE-1). Also,

M−1(X1) = C1 and
∑
θ∈C1

supp σ(· | θ) = X1 as every type with access to messages

in X1 (and payoff w1) would be sending these messages in equilibrium. Thus,

(C1, X1, σ|C1 , w1) is a coalition.

Next, consider the restricted game with type space Θ2 := Θ ∖ C1. Let w2 =

max
θ∈Θ2

max
m∈M(θ)

v(µ(· | m)) be the highest equilibrium payoff across all types in Θ2 and

X2 (C2) be the set of messages (types) getting that payoff. Then, (C2, X2, σ|C2 , w2) is

a coalition of the restricted game with type space Θ2. Proceed in a similar fashion to
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obtain a partition {(Ct, Xt, σ|Ct , wt)}, where wt is strictly decreasing by construction.

The partition is individually rational or else there exists a type with a profitable

deviation to an off-path message.

(⇐=): let σ be the strategy associated with an IR partition {(Ct, Xt, σt, wt)}Tt=1

such that w1 ≥ . . . ≥ wT . Let R’s off-path beliefs be skeptical for all off-path messages,

meaning that ∀m ∈ M ∖ suppσ, µ(· | m) = arg min
µ(·|m) feasible

v(µ(·|m)). Now, ∀t,

every type θ ∈ Ct does not have profitable deviations to any on-path messages (she

does not have access to messages in coalitions prior to t that obtain a higher payoff

and coalitions after t receive a lower payoff) or to off-path messages (by individual

rationality). Therefore, σ is a PBE strategy. □

Proof of Remark 2

Let τ ∈ {1, . . . , T} be minimal such that w̃ > wτ . By definition, C̃ = M−1(X̃) ∩(⋃
t:wt<w̃ Ct

)
= M−1(X̃) ∩ Θτ . For t < τ , note that if m ∈ Xt then M−1({m}) ⊆

C1 ∪ . . .∪Ct ⊆ C1 ∪ . . .∪Cτ−1 = Θ−Θτ , which implies m /∈ X̃. Hence X̃ ∩Xt = ∅,

so M−1(X̃ ∩ Xt) ∩ Ct = ∅. For t ≥ τ , it is obvious that M−1(X̃ ∩ Xt) ∩ Ct ⊆
M−1(X̃) ∩Θτ = C̃. □

Proof of Proposition 2

(⇐=) Let {(Ct, Xt, σt, wt)}Tt=1 be a greedy partition. Because any greedy partition is

also a feasible output of Algorithm 2, σ is a PBE strategy by Proposition 1.

It remains to show the coalition proofness. Suppose that there is a blocking

coalition (C̃, X̃, σ̃, w̃) of σ. Since w1 ≥ . . . ≥ wT , there exists τ such that wτ−1 ≥
w̃ > wτ ≥ wτ+1 ≥ . . . ≥ wT . Then, (C̃, X̃, σ̃, w̃) is a coalition of the restricted game

with type space
⋃

t:wt<w̃

Ct =
⋃
t≥τ

Ct = Θτ . Furthermore, w̃ ∈ Wt ∩ (wτ , wτ−1]. That,

combined with w̃ > wτ , contradicts the choice of coalition at step τ .

(=⇒) Suppose that σ is a PBE strategy and coalition-proof. By Proposition 1, σ is

associated with a partition {(Ct, Xt, σt, wt)}Tt=1 with w1 ≥ . . . ≥ wT that satisfies IR.

We prove by induction that, at each step t of Algorithm 3, (Ct, Xt, σt, wt) is a

feasible choice of coalition. For t = 1, note that (C1, X1, σ1, w1) must attain the

payoff w1 = supW1 (hence = maxW1), or else a coalition (C,X, σ, w) with w > w1

would be a blocking coalition of σ. At step 1, a coalition can be chosen by Algorithm 3

iff it attains the payoff maxW1, so (C1, X1, σ1, w1) is a feasible choice.
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Consider now an arbitrary step τ , and suppose that the algorithm has chosen

(Ct, Xt, σt, wt) for t = 1, . . . , τ−1. Since (Cτ , Xτ , στ , wτ ) is a coalition of the restricted

game with type space Θτ and wτ ∈ [max
θ∈Θτ

v(θ), wτ−1], this coalition can fail to be a

feasible choice at step τ only if wτ < max(Wt ∩ [max
θ∈Θτ

v(θ), wτ−1]), i.e., if there is

another coalition (C,X, σ, w) of the restricted game with type space Θτ that pays

w = max(Wt ∩ (−∞, wτ−1]) ∈ (wτ , wτ−1]. In that case, (C,X, σ, w) is a blocking

coalition of σ (since Θτ =
⋃
t≥τ

Ct =
⋃

t:wt<w

Ct), a contradiction. □

Coalition-Optimal Partitions

To prove our existence results, it is useful to define a strengthening of coalition-proof

PBE, which we call coalition-optimal equilibrium (COE). A strategy σ is a COE if it

is associated with a COE partition obtainable from the following algorithm:

Algorithm 4: COE Partition Algorithm

Let t := 1 and Θ1 := Θ, w0 = ∞;

while Θt ̸= ∅
let Wt = {w ∈ R | ∃(C,X, σ, w) ∈ C(Θt)} be the set of payoffs attainable
by coalitions of the restricted game with type space Θt;

let (Ct, Xt, σt, wt) ∈ C(Θt) be such that wt = maxWt and wt ≤ wt−1;

let Θt+1 := Θt ∖ Ct and t := t+ 1;

end

Rather than requiring a choice of coalition (Ct, Xt, σt, wt) that maximizes wt sub-

ject to wt ∈ [max
θ∈Θt

v(θ), wt−1], Algorithm 4 requires wt to be maximized with no

constraints, and only admits the choice as valid if it happens to satisfy wt ≤ wt−1.

(As shown next, imposing IR is unnecessary because the output of Algorithm 4 au-

tomatically satisfies IR.) We now prove that COEs are indeed coalition-proof PBEs:

Lemma 4. Every COE is also a coalition-proof PBE. A coalition-proof PBE partition

{(Ct, Xt, σt, wt)}Tt=1 is a COE partition if and only if, for each t, maxWt ≤ wt−1.

Proof. For the first part, we show that any output of Algorithm 4 must satisfy IR,

i.e., wt ≥ max
θ∈Θt

v(θ) for all t. Indeed, if at any step t we have that maxWt < max
θ∈Θt

v(θ),

then maxWt < v(θ) for some θ, so maxWt < min
µ(·|m) feasible

v(µ(·|m)) for some message
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m ∈ M(θ). This is impossible as the trivial coalition with X̃ = {m}, C̃ = M−1({m})
is in C(Θt) and must pay at least min

µ(·|m) feasible
v(µ(·|m)). Therefore, for each t, t-th

coalition of Algorithm 4 satisfies wt = maxWt and wt ∈ [max
θ∈Θt

v(θ), wt−1]. Hence, that

coalition is a feasible choice of coalition at step t of Algorithm 3.

For the second part, if maxWt > wt−1 for some (minimal) t, then an attempt to

obtain the partition {(Ct, Xt, σt, wt})Tt=1 as an output of Algorithm 4 would fail at

step t, since when maxWt > wt−1, Algorithm 4 and Algorithm 3 require wt to take

different values. (In fact, Algorithm 4 would halt at this step.) On the other hand, if

maxWt ≤ wt−1 for all t, then at each step max(Wt ∩ [max
θ∈Θt

v(θ), wt−1]) = maxWt, so

{(Ct, Xt, σt, wt)}Tt=1 would also be a valid output of Algorithm 4.

While there are generally fewer COEs than coalition-proof PBEs, it can be easier

to show the existence of COE.

Proof of Theorem 1

(ii) We show that, if QC∗ and M-C hold, then maxWt ≤ wt−1 at every step of either

Algorithm 3 or Algorithm 4, so COE and coalition-proof PBE are equivalent, as are

Algorithm 3 and Algorithm 4, and both algorithms always terminate.

Take an incomplete partition (Ct, Xt, σt, wt)
s
t=1 generated by Algorithm 4 with

wt = maxWt ≤ wt−1 for all t ≤ s, but Θs+1 ̸= ∅ and maxWs+1 > ws. Let

(Cs+1, Xs+1, σs+1, ws+1) be an element of Cs+1 with ws+1 = maxWs+1, so ws < ws+1.

By Lemma 1, without loss of generality, Xs+1 = {m} for some m ∈ M, so ws+1 =

v(µ0
Cs+1

). Similarly, since ws = maxWs, without loss of generality, Xs = {m′′} and

ws = v(µ0
Cs
).

By M-C, there is a message m′ such that M−1({m′}) = M−1(Xs) ∪M−1({m}) =
Cs ∪ Cs+1 =: C̃.19 Therefore, (C̃, {m′}, ·, v(µ0

C̃
)) is a coalition (in which all types in

C̃ send m′ with probability one) of the restricted game with type space Θs. By QC∗,

v(µ0
C̃
) > min{v(µ0

Cs
), v(µ0

Cs+1
)} = min{ws, ws+1} = ws,

which contradicts that ws = maxWs.

19By an abuse of notation, we use M−1(Xt) to denote the preimage of Xt through M in the restricted
game at stage t rather than in the original game, i.e., M−1(Xt) ∩Θt.
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(i) Suppose that QC and M-C hold. We will show that a COE exists, which implies

the result by Lemma 4. To do this, we will construct a maximal coalition-optimal

partition by executing a modified version of Algorithm 4. At a given stage t, denote

by Ct the collection of all coalitions yielding the payoff maxWt. Algorithm 4 simply

picks any element of Ct, as long as maxWt ≤ wt−1. In the modified algorithm, we pick

a coalition (Ct, Xt, σt,maxWt) ∈ Ct that is also maximal in the sense of set inclusion,

i.e., such that, for all (C ′
t, X

′
t, σ

′
t,maxWt) ∈ Ct, either Ct = C ′

t or Ct −C ′
t ̸= ∅. If the

algorithm terminates, we refer to its output as a maximal COE, which is of course a

COE.

We argue this algorithm always terminates and returns a COE. Suppose for the

sake of contradiction that there is an incomplete partition {(Ct, Xt, σt, wt)}st=1 gen-

erated by this modified algorithm, with wt = maxWt ≤ wt−1 for all t ≤ s, but

Θs+1 ̸= ∅ and maxWs+1 > ws. Let (Cs+1, {m}, ·, ws+1) be an element of C(Θs+1)

with ws+1 = maxWs+1, so ws < ws+1 = v(µ0
Cs+1

). As before, without loss, Xs = {m′′}
and ws = v(µ0

Cs
) as well. Repeat the same argument as in the case (QC∗+MC) to

construct the coalition (C̃, {m′}, ·, v(µ0
C̃
)) with C̃ = Cs ∪ Cs+1. Now, because v is

only weakly quasiconcave, we have that

v(µ0
C̃
) ≥ min{v(µ0

Cs
), v(µ0

Cs+1
)} = min{ws, ws+1} = ws.

Again, if the inequality holds strictly, the property ws = maxWs is violated. But

if it holds at equality, then the maximality of (Cs, {m′′}, ·, ws) is violated, since

(C̃, {m}, ·, v(µ0
C̃
)) pays the same as (Cs, {m′′}, ·, ws) and strictly contains it, i.e.,

C̃ = Cs ∪ Cs+1 ⊋ Cs.

(iii) If C 7→ v(µ0
C) is injective, then there is at most one feasible choice of Ct at

each step in the proof of (i). Indeed, the mapping C 7→ v(µ0
C) must have a unique

maximum C∗ = M−1(X∗) among feasible C at that step, and the only valid coalitions

must then be (C∗, X∗, ·, v(µ0
C∗)), as well as others with type set C∗ if they happen

to yield the same payoff (by Lemma 1, higher payoffs are not possible). Since all

valid coalitions have type set C∗, pay v(µ0
C∗), and leave the game in the same state

in step t+ 1, and this is true at every step, all coalitions resulting from Algorithm 3

are payoff-equivalent.

As for the genericity, there is to our knowledge no measure-theoretic notion of

genericity for subsets of the space of quasiconcave functions. (Hunt, Sauer, and
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Yorke (1992)’s notion of prevalence, used in Proposition 3, is only defined for subsets

of vector spaces; the space of quasiconcave functions is not a vector space.)

However, if we endow the space Q of quasiconcave functions from ∆n−1 to R with

the metric induced by || · ||∞, then the set of functions v ∈ Q such that v(x) ̸= v(x′) is

clearly open and dense, for any x ̸= x′.20 Then the set of functions with C 7→ v(µ0
C)

injective is a finite intersection of open and dense sets, hence open and dense. □

Proof of Theorem 2

(ii) We will show that, if B∗ holds, then when following either Algorithm 3 or Algo-

rithm 4, the property maxWt ≤ wt−1 is always satisfied. For the sake of contradiction,

suppose that there is an (incomplete) output (Ct, Xt, σt, wt)
s
t=1 of Algorithm 4 such

that Θs+1 ̸= ∅ and maxWs+1 > ws. Let (Cs+1, Xs+1, σs+1, ws+1) be an element of

Cs+1 with ws+1 = maxWs+1. Then, ws < ws+1. By Lemma 2, this is equivalent to

v(µ0
Cs
) < v(µ0

Cs+1
).

Consider an auxiliary game in which the type space is Cs ∪ Cs+1, the prior is

µ0
Cs∪Cs+1

and the message space is Xs ∪Xs+1 (i.e., the message mapping is as in the

original game, except that messages outside of Xs ∪Xs+1 are unavailable). Suppose

that Xs∪Xs+1 is finite.
21 Then this auxiliary game has a PBE by standard existence

theorems (Fan-Glicksberg). Using Proposition 1, take the first coalition of a PBE

partition strategy (C̃, X̃, σ̃, w̃). By B∗ and Proposition 1, w̃ ≥ v(µ0
Cs∪Cs+1

). Moreover,

by B∗, ws < v(µ0
Cs∪Cs+1

) < ws+1. Then, w̃ > ws. But (C̃, X̃, σ̃, w̃) is in fact a feasible

coalition in stage s, contradicting that ws = maxWs.

The same argument applies to outputs of Algorithm 3. In fact, because at each

step the property maxWt ≤ wt−1 is guaranteed, Lemma 4 implies that the set of

COEs and coalition-proof PBEs coincide. Moreover, Algorithm 4 halts only when

Wt > wt−1 for some t. Thus, Algorithm 4 (and equivalently Algorithm 3) always

terminates, as desired.

(i) We assume that v satisfies B, and show that a COE exists, which implies existence

20The openness is obvious. For the density, given v ∈ Q, we want v′ ∈ B(v, ϵ) such that v(x) ̸= v(x′)
for arbitrarily small ϵ > 0. If v(x) ̸= v(x′), take v′ = v. If v(x) = v(x′) = y, let K+ = {x ∈ ∆n−1 :
v(x) ≥ y} and K++ = {x ∈ ∆n−1 : v(x) > y}. Find a set K ′ convex such that K++ ⊆ K ′ ⊆ K+

and x ∈ K ′, x′ /∈ K ′ or x /∈ K ′, x′ ∈ K ′, then set v′ = v + ϵ
21K′ . For a choice of K ′, either

K ′ = Conv(K++ ∪ {x}) or K ′ = Conv(K++ ∪ {x′}) must work.
21If Xs ∪Xs+1 is infinite, a similar argument goes through: since the type space is finite, we can take
at most n messages with each possible preimage in the type space and discard the rest.
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of a coalition-proof PBE. The general strategy of the proof will be to choose coalitions

at each step of the algorithm in a careful way that ensures {wt} is weakly decreasing.

A few observations are in order. First, note that the set of payoffs that can be

possibly attained by a coalition in the game (and in any restricted game) is finite.

The reason is that, given a type set C, any coalition supported on that type set must

receive the payoff v(µ0
C), and there are at most 2n type sets that a coalition can be

supported on. Label these possible payoffs y1 < y2 < . . . < ym.

Next, we will provide a characterization of the level sets of v that these payoffs exist

in. Let L+
y (v) = {µ : v(µ) ≥ y}, L++

y (v) = {µ : v(µ) > y}, L−
y (v) = {µ : v(µ) ≤ y},

L−−
y (v) = {µ : v(µ) < y}, and Ly(v) = {µ : v(µ) = y} be the upper level set,

strict upper level set, lower level set, strict lower level set, and level set of v at y,

respectively.

Remark 3. For any v satisfying B and any y, L+
y (v), L

++
y (v), L−

y (v), L
−−
y (v) Ly(v)

are convex sets.

Lemma 5. The boundaries of Ly(v), that is, the sets Ly(v) ∩ L++
y (v) and Ly(v) ∩

L−−
y (v), can be written as ∆Θ∩H+, ∆Θ∩H− respectively, for some hyperplanes H+,

H− ⊆ Rn. Moreover, H+ and H− do not intersect on the interior of ∆Θ, unless they

coincide.

Proof. Because L−
y (v) L

++
y (v) are convex and disjoint, and L++

y (y) is open, it follows

from the separating hyperplane theorem that there is a hyperplane H+ = {x ∈ Rn :

⟨x, v+⟩ = c+} such that ⟨x, v+⟩ ≤ c+ for all x ∈ L−
y (v), and ⟨x, v+⟩ > c+ for all

x ∈ L++
y (v). We can define H− analogously so that ⟨x, v−⟩ < c− for all x ∈ L−−

y (y)

and ⟨x, v−⟩ ≥ c+ for all x ∈ L+
y (y).

But because L−
y (v) ∪ L++

y (v) = ∆Θ, we must have L−
y (y) = {x ∈ ∆Θ : ⟨x, v+⟩ ≤

c+}, L++
y (y) = {x ∈ ∆Θ : ⟨x, v+⟩ > c+}. Indeed, any x ∈ ∆Θ such that ⟨x, v+⟩ ≤ c+

must be in L−
y (y) because if it were not, it would have to be in L++

y (y), implying

⟨x, v+⟩ > c+, a contradiction. The same argument applies to c−. It follows that the

boundaries of Ly(v) are ∆Θ ∩H+ (where it meets L++
y (v)) and ∆Θ ∩H− (where it

meets L−−
y (v)).

Finally, we prove that H+ and H− either do not intersect in the interior of ∆Θ,

or they coincide. Suppose that there is x ∈ int(∆Θ) such that ⟨x, v+⟩ = c+ and

⟨x, v−⟩ = c−. If H+ and H− do not coincide (i.e., v+ and v− are not parallel), there

is a vector u such that ⟨u, v+⟩ > 0 > ⟨u, v−⟩ (indeed, if v+, v− are not orthogonal,
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either v+ or −v+ works; if they are, v+ − v− works). Then, for ϵ > 0 small enough,

x+ϵu ∈ ∆Θ and ⟨x+ϵu, v+⟩ > c+, c− > ⟨x+ϵu, v−⟩, so x+ϵu ∈ L++
y (v)∩L−−

y (v) = ∅,

a contradiction.

Thus, for each y, Ly(v) is either a hyperplane (when H+, H− coincide) or the

space between two hyperplanes (if not) intersected with the simplex ∆Θ. The first

case needs no special care.

H+

Hλ

Hλ′

Hλ′′

H−

µ0
Cs+1

µ0
Cs∪Cs+1

µ1

µ2

µ0
Cs

µ0
C′

µ0
C′′

V
(µ
)
<
y

V
(µ
)
=
y

V
(µ
)
>
y

Figure 5. Choice of λ-maximizing coalition

For the second case, we provide a transitive and complete preference relation on

Ly(v), as follows. The construction is illustrated in Figure 5. For simplicity, suppose

H+ ∩H− ∩∆Θ = ∅.22 Define Hλ = {x : ⟨x, vλ⟩ = cλ}, where vλ = λv+ + (1− λ)v−,

and cλ = λc+ + (1− λ)c−, for λ ∈ [0, 1]. Define H̃λ = Hλ ∩Θ. It is easy to show that

(H̃λ)λ∈[0,1] partitions Ly(v). We then say that, for any µ ∈ H̃λ, µ
′ ∈ H̃λ′ , µ ⪰ µ′ iff

λ ≥ λ′.

Armed with this ordering on each Lyi(v) with nonempty interior, we tweak Algo-

rithm 4 as follows: if the optimal payoff feasible at stage t of the algorithm, maxWt,

satisfies maxWt ≤ wt−1, and belongs to a level set Ly(v) with nonempty interior,

then we pick a coalition (Ct, Xt, σt, wt) with wt = maxWt such that µ0
Ct

is top-ranked

with respect to the preference relation on Ly(v), relative to µ0
C′

t
for all other C ′

t that

can support a coalition yielding wt at that stage. (Thus, in Figure 5, λ > λ′ > λ
′′
,

and we pick Ct in stage t rather than C ′ or C ′′. Intuitively, in this way we ensure

22If H+ and H− intersect at the boundary of ∆Θ, the same argument works if we take all points in

H+ ∩H− to be in H̃1.
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that µ0
Ct

is as close as possible to L++
y (v).) If Ly(v) is just a hyperplane, we simply

pick any coalition with wt = maxWt.

We now retread the argument used in the first case (where B∗ holds) for why

maxWt+1 ≤ wt must hold. Suppose that B holds, but our modified algorithm yields

an incomplete partition (Ct, Xt, σt, wt)
s
t=1 such that maxWs+1 > ws. Again, define

a coalition (Cs+1, Xs+1, σs+1, ws+1) with ws+1 = maxWs+1 regardless. Again, ws <

ws+1, so v(µ0
Cs
) < v(µ0

Cs+1
). Consider the same auxiliary game with type space

Cs ∪ Cs+1, prior µ0
Cs∪Cs+1

and message space Xs ∪ Xs+1. This game has a PBE.

Label it as a partition strategy with strictly decreasing payoffs, as in Proposition 1.23

Label the posteriors generated by each coalition as µ1, . . . , µk; their convex hull must

contain µ0
Cs∪Cs+1

.24 Now, if Lws(v) is only a hyperplane, then µ0
Cs∪Cs+1

∈ L++
ws

(v),

because µ0
Cs∪Cs+1

is a convex combination of µ0
Cs

∈ Lws(v) and µ0
Cs+1

∈ L++
ws

(v). Then

at least one µi ∈ L++
ws

(v), so the PBE’s top coalition (which is a feasible coalition

at stage s of the algorithm) pays more than ws, contradicting that ws = maxWs.

If Lws(v) has nonempty interior, then either µ0
Cs∪Cs+1

∈ L++
ws

(v) (in which case the

same argument applies) or µ0
Cs∪Cs+1

∈ Lws(v), but µ0
Cs∪Cs+1

≻ µ0
Cs
. To see why,

suppose that µ0
Cs

∈ Hλ, so ⟨µ0
Cs
, vλ⟩ = cλ. Note that this implies ⟨µ0

Cs
, v−⟩ > c− and

⟨µ0
Cs
, v+⟩ < c+. Since µ0

Cs∪Cs+1
is a convex combination of µ0

Cs
and µ0

Cs+1
, and µ0

Cs+1

is above even H+ (i.e., ⟨µ0
Cs+1

, v+⟩ > c+), we have ⟨µ0
Cs∪Cs+1

, vλ⟩ > cλ. But then there

must be µi which is also above Hλ. And it must be µ1, the posterior generated by

the PBE’s top coalition, because all other coalitions pay less than it, hence less than

y. The PBE’s top coalition thus yields payoff ws = maxWs and should have been

chosen over (Cs, Xs, σs, ws) at step s of Algorithm 3 due to being higher-ranked with

respect to ⪰Lws (v), a contradiction.

(iii) The argument is analogous to Theorem 1.(iii). Again, there is no suitable

measure-theoretic notion of genericity, but within the set B of v : ∆n−1 → R sat-

isfying B, endowed with the metric induced by || · ||∞, the set of all v such that

v(x) ̸= v(x′) is open and dense, for any x ̸= x′.25 Then the set of v with C 7→ v(µ0
C)

23Proposition 1 only states that payoffs are weakly decreasing, but we can merge coalitions that yield
the same payoff into one, to obtain a partition with strictly decreasing payoffs.

24Note that the µi are not necessarily posteriors generated by any message; instead, each coalition
(C̃z, X̃z, σ̃z, w̃z) is mapped to the posterior µ0

C̃z
.

25Again, the openness is trivial. For the density, it suffices to construct v′ = v+1K , where K can now
be a half-plane intersected with ∆n−1 that is nested between K+ and K++ and contains exactly
one of {x, x′}.
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injective is a finite intersection of open and dense sets, hence open and dense. □

Proof of Theorem 3

We prove a helpful lemma first. Let vQC(·) be the quasiconcave closure of v (Lipnowski
and Ravid, 2020), i.e.,

vQC(µ) = sup
µ∈Conv(µ1,...,µn)

min
i=1,...,n

{v(µi)}. (1)

Lemma 6. If v is upper semicontinuous, so is vQC. Moreover, the maximum is

attained for all µ in (1).

Proof. We first prove the second claim. Suppose that, for some µ, the maxi-

mum is not attained in (1). Then there is a sequence (µ1t, . . . , µnt)t such that

µ ∈ Conv(µ1t, . . . , µnt) for all t and min{v(µ1t), . . . , v(µnt)} → vQC(µ) =: y as

t → ∞. Take a subsequence tm along which (µ1tm , . . . , µntm)m → (µ1∞, . . . , µn∞).

Then µ ∈ Conv({µ1∞, . . . , µn∞}), and the upper semicontinuity of v implies

min{v(µ1∞), . . . , v(µn∞)} ≥ y. But then vQC(µ) ≤ min{v(µ1∞), . . . , v(µn∞)}, a

contradiction.

As for the first claim, v is upper semicontinuous iff its level sets {µ : v(µ) ≥ y}
are closed. Because vQC(µ) can always be written as min{v(µ1), . . . , v(µn)} for some

µ1, . . . , µn that contain µ in its convex hull, the level set {µ : vQC(µ) ≥ y} is simply

the convex hull of {µ : v(µ) ≥ y}, hence also closed.

Now, as in Theorem 1, we aim to show the existence of a COE, which must be a

coalition-proof PBE by Lemma 4. Denote the game by G. Denote by GQC a disclosure

game with the same message mapping M as G, but with payoff function vQC instead

of payoff correspondence v. We know that GQC has a COE (Ct, Xt, σt, wt)
T
t=1 because

M satisfies M-C and vQC is quasiconcave (i.e., satisfies QC), so Theorem 1 applies.

We will use this to construct a COE (Ct, X̃t, σ̃t, wt)
T
t=1 of G that is payoff-equivalent

to (Ct, Xt, σt, wt)
T
t=1.

Without loss of generality, we can assume that each coalition (Ct, Xt, σt, wt) uses

a single message mt and so can be written as (Ct, {mt}, ·, vQC(µ0
Ct
)) (Lemma 1). By

Lemma 6, take for each t a collection µ1
t , . . . , µ

n
t whose convex hull contains µ0

Ct
and

such that vQC(µ0
Ct
) = min(v(µ1

t ), . . . , v(µ
n
t )).
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We will construct µ̃1
t , . . . , µ̃

n
t whose convex hull contains µ0

Ct
and such that

vQC(µ0
Ct
) ∈ v(µ̃i

t) for all i = 1, . . . , n.

If vQC(µ0
Ct
) ∈ v(µ0

Ct
), we are done (take µ̌i

t = µ0
Ct
). Clearly vQC(µ0

Ct
) < ṽ(µ0

Ct
)

is impossible as in fact vQC ≥ v. If instead vQC(µ0
Ct
) > v(µ0

Ct
), then, for each i s.t.

v(µi
t) > vQC(µ0

Ct
), we can choose µ̃i

t to be a belief on the line segment [µi
t, µ

0
Ct
]. Any

such choice preserves the property that µ0
Ct

is in the convex hull of µ̃1
t , . . . , µ̃

n
t . And,

because v is upper hemicontinuous, and goes from v(µi
t) > vQC(µ0

Ct
) to v̌(µ0

Ct
) <

vQC(µ0
Ct
) over this line segment, there is an intermediate point µ̃i

t where vQC(µ0
Ct
) ∈

v(µ̃i
t).

Returning to the main proof, we can take X̃t = {(mt, 1), . . . , (mt, n)}, and σ̃t

such that message (mt, i) induces belief µ̃i
t. Such a message strategy exists by the

“fundamental lemma of information design”, i.e., it is possible to construct a message

strategy to produce posteriors that are any mean-preserving spread of µ0
Ct
.

By construction, all messages (mt, i) can then induce the payoff wt = vQC(µ0
Ct
) ∈

v(µ̃i
t) in the original game G. A partition thus constructed attains in G the same

payoffs that (Ct, Xt, σt, wt)
T
t=1 attains in GQC . Because v ≤ v ≤ vQC , any message

strategy yields weakly lower payoffs in G than it does in GQC . Hence, if wt =

maxWt is the maximal payoff attainable by coalitions in C(Θt) at stage t in GQC ,

then max W̃t, the analogous maximum in G, must satisfy max W̃t ≤ maxWt. But

since (Ct, X̃t, σ̃t, wt) is a coalition at stage t in G, wt ∈ W̃t, so wt = max W̃t =

maxWt. Thus wt = max W̃t as required by Algorithm 4. Moreover, the partition we

constructed inherits from the original the property that wt is weakly decreasing in t,

so wt = max W̃t ≤ wt−1 for all t. Thus (Ct, X̃t, σ̃t, wt)
T
t=1 is a COE of G. □

Proof of Theorem 4

We will use the following lemma.

Lemma 7. Consider a coalition (C,X, σ, w) ∈ C(Θ̃) of a restricted game with non-

empty type space Θ̃ ⊆ Θ. Then, there exists a coalition (C,X ′, σ′, w′) ∈ C(Θ̃) for all

w′ ∈ [min v̌, w].

Proof. Label the posteriors induced by the coalition (C,X, σ, w) as µ1, . . . , µk. By

construction, we have w ∈ v(µi) for all i ∈ {1, . . . , k}.
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We will argue that, for each i and w′ ∈ [min v̌, w], there are beliefs µi
1, . . . , µ

i
n such

that µi ∈ Conv(µi
1, . . . , µ

i
n) and w′ ∈ v(µi

j) for all ij. Indeed, any choice of the form

µi
j = αjµ

i + (1−αj)µ
0
{θj} for αj ∈ [0, 1] (j = 1, . . . , n) satisfies µi ∈ Conv(µi

1, . . . , µ
i
n).

And, because v is upper hemicontinuous and nonempty, compact and convex valued,

and goes from w ∈ v(µi) to min v ∈ v(µ0
{θj}) over the line segment [µi, µ0

{θj}], there

must be αj such that w′ ∈ v(µi
j).

Following the argument in the text, there are two cases when executing step t of

Algorithm 3. If maxWt ≤ wt−1, then there is always a viable coalition, as we can

simply choose wt = maxWt, which is always IR. Moreover, by Lemma 6, maxWt

is always attainable. If maxWt > wt−1, we have that Wt = [min v̌,maxWt] by

the lemma, so max(Wt ∩ [min v̌, wt−1]) = wt−1, and of course wt−1 ≥ min v̌. Hence

Algorithm 3 can never halt. □

Proof of Proposition 3

(iii) Take a restricted game with type space Ωt, and write Ωt =
⋃n

i=1{θi} × Ai with

Ai ⊆ [0, 1]. Since Cs = M−1(Xs) for s < t and M−1({m}) is always of the form⋃n
i=1{θi} × [0, pi], Ai must be of the form [0, 1], (qi, 1] (0 ≤ qi < 1), or ∅. Note that

µ0
Ωt
(θi) = 0 iff Ai = ∅.

Consider the set of payoff-relevant beliefs µ ∈ ∆Θ that can be induced by a

coalition given the type space Ωt. Clearly supp µ must be a subset of supp (µ0
Ωt
): if

Ai = ∅ then µ(θi | m) = 0 for any on-path message m /∈ X1 ∪ . . . ∪Xt−1.

But in fact all beliefs with supp µ ⊆ supp (µ0
Ωt
) are attainable. Indeed, to attain

a posterior µ = (µ1, . . . , µn), we can use a message m accessible to types (θi, j) with

j ≤ zi, where

zi = qi + λ
µi

µ0
i

(2)

for each i. We can take λ > 0 to be any value small enough that zi ≤ 1 for all i.

Since all posteriors µ with supp µ ⊆ supp (µ0
Ωt
) are attainable, and for each of

them a coalition can be built using a single message, we have that

Wt = {v(µ) : µ ∈ ∆supp (µ0
Ωt
)}.

Then maxWt = v(µ∗supp (µ0
Ωt

)). Since this argument applies to all t, it also yields by
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induction that maxWt ≤ wt−1 for all t. Indeed, v(µ∗supp (µ0
Ωt

)) is weakly decreasing

in t, as supp (µ0
Ωt
) must weakly shrink as t increases, v(µ∗C) weakly decreases if C

shrinks. Then maxWt is weakly decreasing in t. So w1 = maxW1, maxW2 ≤ w1 =⇒
w2 = maxW2, maxW3 ≤ w2 =⇒ w3 = maxW3, and so on. Thus wt = v(µ∗supp (µ0

Ωt
)),

as desired.

(ii) Lemma 4 and the same argument used in Theorem 2 and Theorem 1 applies here:

since we have shown that maxWt ≤ wt−1 always holds, Algorithm 3 and Algorithm 4

are equivalent and neither ever halts.

As for the second part, note that, if the t-th coalition (Ct, Xt, σt, wt) is such

that supp (µ0
Ωt+1

) = supp (µ0
Ωt
), then wt+1 = wt by (iii). But then (Ct, Xt, σt, wt)

and (Ct+1, Xt+1, σt+1, wt+1) can be joined into a single coalition (C ′
t, X

′
t, σ

′
t, wt) with

Ct ⊊ C ′
t, contradicting the maximality of (Ct, Xt, σt, wt). Then |supp (µ0

Ωt+1
)| ≤

|supp (µ0
Ωt
)| − 1 for all t; the result follows as |supp (µ0)| = n.

(i) Follows from (ii): any way of picking (maximal) coalitions through Algorithm 3

terminates and yields a coalition-proof PBE.

(iv) First restrict attention to partitions made with coalitions of maximal size and

using a single message if possible. We claim that there is a unique coalition-proof

PBE under these restrictions. Indeed, if µ∗C is a singleton for every C ⊆ Θ, then the

t-th coalition (Ct, Xt, σt, wt) in a coalition-proof PBE partition must induce the single

belief in µ∗supp (µ0
Ωt

) with probability 1, by (iii). Then, only messages as constructed in

(iii) (Equation (2)) can be used. Denote these messages by mt(λ), indexed by the λ

used in Equation (2). To obtain a coalition of maximal size, we must use the maximal

λ s.t. qi+λ µi

µ0
i
≤ 1∀i, that is, we must haveXt = {mt(λ

∗)}, with λ∗ = minn
i=1(1−qi)

µ0
i

µi
.

We can iterate on t to construct a coalition-proof PBE (Ct, Xt, σt, wt)
T
t=1 with T ≤ n.

Next, we argue by induction that any coalition-proof PBE σ′ must be payoff-

equivalent to this one. By construction, w1 is the global maximum of v, so no higher

payoff can be obtained under σ′. Let C ′
1 be the set of types (θ, j) obtaining payoff w1

under σ. Because the only way to obtain this payoff is with the unique posterior µ∗Θ,

we must have µ0
C′

1
= µ∗Θ. Because all types with access to a message attaining this

payoff must use it, and lower types have access to more messages, C ′
1 ∩ ({θi} × [0, 1])

must be of the form [0, pi] for all i. Then pi = λ
µ∗Θ
i

µ0
i

for all i and some fixed λ

(Equation (2)). Clearly λ > minn
i=1

µ0
i

µ∗Θ
i

is impossible as it would imply pi > 1 for

some i. If λ < minn
i=1

µ0
i

µ∗Θ
i
, then (D, {m1(λ

∗)}, ·, w1) with D =
⋃n

i=1{θi} × ( pi, λ
∗ µi

µ0
i
]

is a blocking coalition—intuitively, we can pack the remaining types who “should”
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have been in the coalition C1 into a new coalition using message m1(λ
∗), so σ′ is not

coalition-proof. If λ = minn
i=1

µ0
i

µ∗Θ
i

then C1 = C ′
1 and σ and σ′ are payoff-equivalent

up to the first coalition. We can iterate the same argument for all t ≤ T .

This argument proves the first claim. Finally, we argue that for generic v, µ∗C

is indeed a singleton for all C ⊆ Θ. The notion of genericity we use is that of

prevalence (Hunt, Sauer, and Yorke, 1992), and we consider the space of functions

V = {v : ∆Θ → R continuous}. (Effectively the same proof works if we instead

consider all upper semicontinuous functions with this domain and codomain.) We

denote by V ′ ⊆ V the set of functions v with unique µ∗C for all C.

Equivalently, we aim to show that the set of v such that at least one µ∗C is not a

singleton is shy. By Fact 3’ in Hunt, Sauer, and Yorke (1992), it is enough to show

that, for each C ⊆ Θ, the set of v such that µ∗C is not a singleton is shy.

Fix C. Denote by S ⊆ V the set of functions such that |µ∗C | > 1. We aim to

use as a probe the subspace Z of linear functions, i.e., Z = {fa : a ∈ Rn}, where
fa : ∆n−1 → R is defined by fa(x) ≡ ⟨a, x⟩. We then define a measure ν as follows:

if W ⊆ V and W ∩ Z = {fa : a ∈ A}, then ν(W ) = L(A), where L is the Lebesgue

measure in Rn. Then we need to show that, for any w ∈ V , ν(S + w) = 0. That is,

we need to show that the set {a ∈ Rn : fa ∈ S + w} has measure zero for all w ∈ V .

For v ∈ S, v + w ∈ Z iff v(x) + w(x) ≡ fa(x) for some a ∈ Rn. Equivalently,

fa ∈ (S + w) ∩ Z iff v(x) := ⟨a, x⟩ − w(x) has multiple maxima. In turn, v has

multiple maxima if and only if its concave closure vC does, i.e., iff ⟨a, x⟩+ (−w)C(x)

does. Thus, without loss, we can restrict attention to convex w. Moreover, for convex

w, ⟨a, x⟩ − w(x) has multiple maxima iff the supporting hyperplane Ha of the graph

of −w with normal vector a meets the graph of −w at multiple points. Thus, it is

enough to show that, for any compact convex set K ⊆ Rn, its supporting hyperplanes

Ha satisfy that K ∩Ha is a singleton for almost all a ∈ Rn.

Let hK : Rn → R be the support function of K, defined as hK(a) = supk∈K⟨a, k⟩.
For a ̸= 0, hK is differentiable at a iff the supporting hyperplane Ha meets K at a

single point (see Mas-Colell, Whinston, Green, et al. (1995), Proposition 3.F.1). In

addition, hK is Lipschitz: a supremum of L-Lipschitz functions is L-Lipschitz, and

⟨a, k⟩ is ||k||-Lipschitz as a function of a, so hK(a) is supk∈K ||k||-Lipschitz.
Hence, it is enough to prove that a Lipschitz function from Rn to R is differentiable

almost everywhere, which is a special case of Rademacher’s theorem.

□
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Proof of Proposition 4

The construction in Proposition 3.(iv) gives an essentially unique26 way to write

any belief µ ∈ ∆Θ as a convex combination
∑n

j=1 λjµ
∗Cj for some permuta-

tion (θi1, . . . , θin) of Θ and Cj := {θi1, . . . , θi(n−j+1)} for all j. Moreover, it

yields that vtent(µ) =
∑n

j=1 λjv(µ
∗Cj). The identity µ =

∑n
j=1 λj(µ)v(µ

∗Cj) for

µ ∈ conv(µ∗C1 , . . . , µ∗Cn) yields the linearity because the λj are linear functions of µ

over this set. If µ = µ∗C for some C ⊆ Θ, then such a decomposition is given by:

µ∗Cj = µ∗C for some j and λj = 1, yielding vtent(µ∗C) = v(µ∗C).

Conversely, any function ṽ satisfying the given properties must equal vtent. Indeed,

any µ ∈ ∆Θ can be written as µ =
∑n

j=1 λjµ
∗Cj as above, whence

ṽ(µ) =
n∑

j=1

λj ṽ(µ
∗Cj) =

n∑
j=1

λjv(µ
∗Cj) = vea(µ).

□

Proof of Proposition 5

For the first part, take a truth-leaning equilibrium σ. Since truth-leaning equilibria

are PBE, by Algorithm 2, σ is associated with an IR partition (Ct, Xt, σt, wt)
T
t=1 with

wt weakly decreasing.

We argue that any type θ with separating payoff v(µ0
{θ}) ≥ w1 must be truth-telling

in a truth-leaning equilibrium, i.e., σ(θ | θ) = 1. To see why, suppose v(µ(· | θ′)) >
v(µ(· | θ)) for some θ′ ≤ θ.27 Then any type who can send θ can (by evidence

structure) and would rather send θ′, so θ is off-path. But then R interprets θ as

coming from θ (P0), so v(µ(· | θ′)) > v(µ(· | θ)) = v(µ0
{θ}) ≥ w1, a contradiction,

as w1 is the highest payoff in this equilibrium. Then, since truth-telling is weakly

optimal for θ, θ must be truth-telling (A0).

Now suppose σ is not coalition-proof, so there is a blocking coalition (C̃, X̃, σ̃, w̃).

Suppose first that w̃ > w1, so (C̃, X̃, σ̃, w̃) is simply a coalition of the original game.

Let µ be R’s posterior if S is playing σ and R observes the following hypothetical

26The only indeterminacies are that there may be multiple choices of Cj in steps where λj = 0 anyway,
and that there may be multiple (redundant) valid choices of λj when µ∗Cj = µ∗Cj+1 . These do not
affect our argument.

27We write θ′ ≤ θ if θ′ ∈ M(θ).
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information: R sees that m ∈ C̃ but not its realization. Our argument implies that

µ has full weight on all types θ ∈ C̃ such that v(µ0
{θ}) ≥ w1. In addition, no types

outside of C̃ can send a message in C̃: indeed, if θ ∈ Θ can send m ∈ C̃, then θ ≥ m.

Since C̃ = M−1(X̃), m ∈ C̃ implies that type m can send some m′ ∈ X̃, so m ≥ m′.

Then θ ≥ m′, so θ ∈ C̃.

But then, since µ has full weight on all types θ ∈ C̃ such that v(µ0
{θ}) ≥ w1, at

most full weight on other members of C̃, and no weight on any other types, we must

have v(µ) ≥ w̃ = v(µ0
C̃
) by B. But then, since µ is a linear combination of µ(· | m)

for m ∈ C̃, we must have v(µ(· | m)) ≥ w̃ > w1 for some m ∈ C̃, a contradiction, as

w1 is the highest sender payoff attained under σ.

Next we consider the case where ws−1 ≥ w̃ > ws for s ≥ 2, so (C̃, X̃, σ̃, w̃) is a

coalition of the restricted game with type space Θs. The same argument applies: all

types θ in Θs with v(µ0
{θ}) ≥ ws must be truth-telling. If R knows m ∈ C̃ but not

the exact value of m, his posterior µ must have full weight on types θ ∈ C̃ such that

v(µ0
{θ}) ≥ ws, at most full weight on other types in C̃, and no weight on other types.28

Then v(µ) ≥ w̃, so some message in C̃ pays at least w̃, a contradiction.

For the second part, it is enough to show that, if B∗ holds and M has evidence

structure, then all coalition-proof PBEs are payoff-equivalent (as, by the above argu-

ment, the truth-leaning equilibrium is one of them). Since B∗ implies that coalition-

proof PBE is equivalent to COE (Theorem 2), we need to show that all COEs are

payoff-equivalent.

Let C̃1 = {C1 ⊆ Θ : ∃(C1, X1, σ1, w1) ∈ C1 with w1 = maxW1} be the collection

of all type sets that the first coalition in a COE can be supported on. We first show

the following lemma:

Lemma 8. C̃1 is closed under union and intersection.

Proof. Let (C1, X1, σ1, w1), (C ′
1, X

′
1, σ

′
1, w

′
1) ∈ C̃1, so v(µ0

C1
) = v(µ0

C′
1
) =

maxW1. The claim is trivial if C1 ⊆ C ′
1 or vice versa, so suppose not.

By B∗, v
(
αµ0

C1
+ (1− α)µ0

C′
1

)
= maxW1 for any α ∈ (0, 1). But note that

αµ0
C1

+ (1 − α)µ0
C′

1
= βµ0

C1∪C′
1
+ (1 − β)µ0

C1∩C′
1
, if we take α = µ0(C1)

µ0(C1)+µ0(C′
1)

and

28Here is the only difference from the previous case: we need to check not just that types in Θs ∖ C̃
don’t have access to these messages, but also that no types in Θ − Θs send them, i.e., that (X1 ∪
. . .∪Xs−1)∩ C̃ = ∅. But if the message m ∈ C̃ were in Xi (i ≤ s− 1), then type m would be in Ci,

contradicting C̃ ⊆ Θs.
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β =
µ0(C1∪C′

1)

µ0(C1)+µ0(C′
1)
. So v

(
βµ0

C1∪C′
1
+ (1− β)µ0

C1∩C′
1

)
= maxW1 for some β ∈ (0, 1).

Because v satisfies B∗, this implies that either v(µ0
C1∪C′

1
) > maxW1 > v(µ0

C1∩C′
1
),

v(µ0
C1∪C′

1
) < maxW1 < v(µ0

C1∩C′
1
), or v(µ0

C1∪C′
1
) = v(µ0

C1∩C′
1
) = maxW1. The first two

cases lead to a contradiction by a similar argument as in Theorem 2: if v(µ0
C1∪C′

1
) >

maxW1, then the game with type space C1 ∪ C ′
1 and message space C1 ∪ C ′

1 has a

PBE with a top coalition that receives at least v(µ0
C1∪C′

1
), and this is also a coalition of

the original game, a contradiction. Similarly, if v(µ0
C1∩C′

1
) > maxW1, then the game

with type space C1 ∩ C ′
1 and message space C1 ∩ C ′

1 has a PBE with a top coalition

that receives at least v(µ0
C1∩C′

1
), and this is also a coalition of the original game, a

contradiction. (Importantly, the set of types θ with access to messages m ∈ C1 ∪ C ′
1

is exactly C1∪C ′
1, and the set of types with access to m ∈ C1∩C ′

1 is exactly C1∩C ′
1.)

Then v(µ0
C1∪C′

1
) = v(µ0

C1∩C′
1
) = maxW1. To show that there is a coalition with

type set C1 ∪C ′
1, consider again a PBE σ̃ of the restricted game with type space and

message space both equal to C1∪C ′
1. By B∗, either the top coalition’s payoff under σ̃

is strictly greater than maxW1 (leading to a contradiction), or all coalitions receive

exactly maxW1, in which case (C1 ∪ C ′
1, supp σ̃, σ̃,maxW1) is a coalition with type

set C1 ∪ C ′
1. The same argument applies for C1 ∩ C ′

1.

Let C1 =
⋃

C1∈C̃1 C1 be the largest coalition yielding maxW1. Take any COE and

relabel it if necessary so that only the first coalition pays maxW1.
29 Clearly, the set

of types receiving payoff maxW1, C1, is a subset of C1. We will now show that, in

fact, C1 = C1.

Suppose for the sake of contradiction that C1 ⊊ C1, and let D = C1 ∖ C1. By

B∗, v(µ0
D) = maxW1. Then the game with restricted type space D and message

space D has a PBE whose top coalition receives at least maxW1. This coalition

is a valid coalition of the game with type space Θ2 = Θ − C1, because types in

Θ − C1 − D = Θ − C1 have no access to messages in D. But this contradicts

w1 > w2 = maxW2 (Algorithm 4).

This argument shows that, if we relabel partitions so that payoffs are strictly

decreasing, then all COEs are payoff-equivalent up to the first coalition (i.e., C1 =

C ′
1 = C1)). We can iterate to show the result for all coalitions.

□

29That is, if w1 = w2, join the first two coalitions into a single one, and so on.
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