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Abstract

Electoral fraud happens frequently. An emerging literature focuses on election monitors

to counter it. We propose an unexplored complementary approach: institutional design.

We build on Rundlett and Svolik’s (2016) insight that fraud requires coordination among

agents who participate only when they are optimistic about the incumbent’s chances. We

identify an electoral design that eliminates election fraud and simultaneously preserves the

majoritarian outcome, so that the incumbent wins exactly when a majority supports her.

In this design, the electorate is divided into near-identical districts; the incumbent wins

the election if she wins a super-majority of districts; and she wins a district if she receives

the majority of the district’s votes. Requiring the incumbent to win a super-majority

of districts amplifies her agents’ coordination problem by inducing mutual fear that oth-

ers will abandon the incumbent. We highlight multiple directions for future research on

fraud-proof institutional design.
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There are increasing concerns about the integrity of elections across the world (World Bank

2016, pp. 171-2, 2017, pp. 226-7). The literature has focused on monitoring schemes to mitigate

the problem (Hyde 2011; Luo and Rozenas 2018; Garbiras-Dı́az and Montenegro 2022; Brancati

and Penn 2023). But institutional design, which is deeply rooted in Western political thought,

is another approach to guaranteeing a well-functioning polity: for instance, some electoral rules

better aggregate information (Austen-Smith and Banks 1996), and separation of powers (Pers-

son et al. 1997) and checks and balances (Acemoglu et al. 2013) improve accountability. Taking

an institutional-design approach, we show how an appropriately designed electoral system can

prevent the coordination necessary to carry out a wide range of electoral fraud.

We build on Rundlett and Svolik’s (2016) observations that (1) various forms of electoral

manipulation require costly efforts by many agents, (2) the agents’ efforts are not directly ob-

servable to the incumbent, individual or party, who tries to incentivize the agents, and (3)

promised rewards are contingent on the incumbent’s victory. In our model, there are many

districts, each with many voters and an agent. Agents can engage in degrees of fraud (e.g.,

degrees of ballot-stuffing or vote-buying) and the incumbent optimally designs reward schemes

to solve a collective agency problem involving coordination and screening.

We demonstrate the power of institutional design by focusing on the following class of elec-

toral systems: the incumbent wins the election if she wins T ′ percent of districts, and she wins

a district if she wins T percent of the district’s votes. Selecting the risk-dominant equilibrium

in the coordination game among the agents, we show that (T, T ′) with T = 1/2 and T ′ above

a threshold T̂ ′ eliminates electoral fraud and preserves the outcome of majority rule absent

fraud. The threshold T̂ ′ is increasing in the incumbent’s office-rent and (T, T ′) ≈ (1/2, 1) de-

livers this outcome for almost all values of the incumbent’s rent. Viewed as proof-of-concept,

the results hint at a more general relationship between electoral rules and fraud-prevention.1

In the Conclusion, we discuss the limitations of this result and directions for future research.

1In a concurrent paper, Egorov and Sonin (2023) argue that an electoral college system mitigates fraud
because (non-strategic) electoral commissions in party strongholds are more likely to allow fraud, and an
electoral college system shifts electoral competition to contested districts.
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In the Appendix, we identify an error in Rundlett and Svolik’s (2016) analysis and highlight

its implications for institutional design.

1 Model

There is an incumbent seeking re-election and a continuum of agents indexed by i ∈ [0, 1], each

operating in an electoral district i. If the incumbent wins, she receives a payoff b > 0. If she

loses, her payoff is 0. The incumbent wins an electoral district if and only if she receives at

least T ∈ (0, 1) percent of the district’s votes. The incumbent wins the election if and only

if she wins at least T ′ ∈ (0, 1) percent of electoral districts. Agent i can take a costly action

ai ≥ 0 to raise the incumbent’s votes in district i. Taking action ai costs the agent αiai, where

αi > 0. The incumbent’s popularity in district i is xi ∈ R. Given a level of popularity xi and

agent i’s action ai, the incumbent’s vote share in district i is L(ti) ∈ (0, 1), where ti = ai + xi,

and L(·) : R → [0, 1] is a strictly increasing, differentiable function. We normalize L(0) and

make the following assumption to map popularity levels to vote shares.

Assumption 1 limx→∞ L(x) = 1, limx→−∞ L(x) = 0, and L(0) = 1/2.

The incumbent’s popularity levels xi across districts are correlated. In particular, xi =

θ+ σϵi, so that θ captures the incumbent’s aggregate popularity across districts (national pop-

ularity). We assume θ ∼ G, and ϵi ∼ F are iid and independent of θ; F and G admit smooth

log-concave densities f and g on their support; f has bounded support; g has a sufficiently large

support (to ensure dominance regions). An agent i observes xi, but not θ or any ϵj. The incum-

bent observes her total vote share in each district i, L(ti), but she does not observe θ, xi, or ϵi.

Before the election, the incumbent can commit to a reward scheme to motivate her agents

to take costly actions that increase her vote. The incumbent’s promised rewards accrue to the

agents, and she pays for them, if and only if the incumbent wins the election. Generally, the

incumbent could condition each agent’s reward on the entire vector of vote shares (L(ti))i∈I . We
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assume that agent i’s reward can depend only on the incumbent’s vote share in district i, L(ti).

Since L(·) is strictly increasing, the incumbent’s reward scheme takes the form Bi(ti) ∈ [0, b]

for each i. We require Bi(t) to be weakly increasing in t.2

The game proceeds as follows. The incumbent chooses a reward scheme B = (Bi(·))i∈[0,1].

Nature determines θ and ϵi for all i. Each agent i observes xi and B, and decides his action ai.

The election outcome is determined, payoffs are received, and the game ends.

2 Analysis

Fix the incumbent’s reward scheme Bi(ti). An agent i’s strategy is a mapping from her signal

xi to an action, ai(xi) : R → R≥0. Without loss of generality, we focus on bounded strategies.

We focus further on strategies such that ai(xi) + xi is non-decreasing in xi. The incumbent

wins a district i if and only if ai(xi) + xi ≥ Td ≡ L−1(T ) ∈ R.

A single agent’s action does not influence the outcome, because there is a continuum of dis-

tricts. Moreover, the only source of informational heterogeneity among agents is their signals.

Thus, an agent i’s belief that the incumbent wins depends on his characteristics only through

his signal xi. Let p(xi) be i’s belief that the incumbent wins. Agent i’s best response a∗i (xi) is

a∗i (xi) ∈ argmax
ai≥0

p(xi)Bi(ai + xi)− αiai. (1)

Because the incumbent sees ti, but not xi, she faces a screening problem intertwined with

coordination between agents. The incumbent’s problem is

max
B(·)

Eθ

[
1{incumbent wins}

(
b−

∫
i

∫
xi

B(a∗i (xi) + xi) pdf(xi|θ)dxidi

)]
.

We first characterize the incumbent’s reward scheme. Proofs are in an Online Appendix.

2If agents could lower the incumbent’s votes, a non-increasing Bi would invite “reverse fraud”, leaving the
incumbent worse off.
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Proposition 1 Any optimal reward scheme is outcome-equivalent to Bi(ti) = ki · 1{ti≥Td}, for

some ki ≥ 0. That is, it is optimal for the incumbent to reward an agent i if and only if the

incumbent wins district i.

It is wasteful to pay more for ti > Td than for ti = Td. The incumbent could cap the rewards

at the Td level, but this could discourage some types from reaching the winning threshold. If

the incumbent raises rewards at the threshold to compensate, this could encourage too much

fraud because now lower types are more motivated to contribute. Proposition 1 shows that a

step-function reward scheme suffices for optimally balancing these countervailing effects.

Given this reward scheme, agent i’s problem in (1) implies a∗i (xi) ∈ {0, Td − xi}. In par-

ticular, a∗i (xi) = Td − xi if and only if both Td − xi ≥ 0 and p(xi) ki − αi(Td − xi) ≥ 0, where

we assume that agent i takes the highest action when indifferent. If p(xi) is increasing, the

left-hand side is increasing in xi. Then, there exists a x∗
i ≤ Td such that the above inequality

holds for xi ≥ x∗
i , where

p(x∗
i ) ki/αi + x∗

i = Td. (2)

Moreover,

a∗i (xi) =


0 ;xi < x∗

i

Td − xi ;x∗
i ≤ xi ≤ Td

0 ;Td < xi,

so that a∗i (xi) + xi =


xi ;xi < x∗

i

Td ;x∗
i ≤ xi ≤ Td

xi ;Td < xi.

(3)

Consequently, a∗i (xi) + xi ≥ Td if and only if xi ≥ x∗
i .

We now verify that p(xi) is increasing. Given a strategy profile (ai(xi))i∈[0,1] and θ, let m(θ)

be the fraction of districts that the incumbent wins:

m(θ) =

∫ 1

0

Pr(ai(xi) + xi ≥ Td|θ)di.

Because ai(xi) + xi is increasing in xi, and xi is FOSD-increasing in θ, m(θ) is also increasing
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in θ. Moreover, when θ is sufficiently large, the vote share in all districts is above T , and the

incumbent wins. When θ is sufficiently small, because the rewards are bounded, the incumbent

will lose. Thus, there exists a unique threshold θ∗ ∈ R such that

m(θ∗) =

∫ 1

0

Pr(ai(xi) + xi ≥ Td|θ = θ∗)di = T ′ (4)

and the incumbent wins if and only if θ ≥ θ∗. Thus, belief consistency implies p(xi) = Pr(θ ≥

θ∗|xi), which is increasing in xi. Thus, any ((x∗
i )i∈[0,1], θ

∗) that satisfies the individual rational-

ity (2) and belief consistency (4) constitutes an equilibrium. We focus on symmetric settings

where αi = α and ki = k, so that x∗
i = x∗ for all i ∈ [0, 1]. Using the global games approach to

equilibrium selection, we have

Proposition 2 Suppose αi = α and ki = k and focus on the class of strategies with monotone

ai(xi) + xi. Any equilibrium is characterized by a pair of thresholds (x∗, θ∗). In equilibrium, an

agent i engages in election fraud if and only if his signal xi ∈ [x∗(k), Td), and the incumbent

wins if and only if θ ≥ θ∗. Moreover, in the limit as σ → 0, there is a unique equilibrium with

lim
σ→0

θ∗(σ; k) = lim
σ→0

x∗(σ; k) = Td − (1− T ′)k/α

where we recall that Td = L−1(T ).

An agent with the threshold signal x∗ believes that the fraction of players with signals above

x∗ is approximately uniformly distributed on [0, 1]:

Pr( Pr(xj ≥ x∗|θ) ≤ p | xi = x∗ ) = p.

From (3), this fraction is the fraction of districts in which the incumbent wins. Thus, the agent

with threshold signal believes that the fraction of districts that the incumbent wins is uniformly

distributed on [0, 1]. Then this agent believes that the probability that the incumbent wins at
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least T ′ percent of districts—and hence the election—is 1−T ′: p(x∗) = 1−T ′. Combined with

(2) this yields the limit values of x∗ and θ∗. This reveals how the term 1 − T ′ stems from the

strategic considerations that arise in the agents’ coordination game.

From Proposition 2, in the limit θ∗(k) ≈ x∗(k), so that ti ≥ Td in almost all the districts

whenever θ > θ∗(k). Thus, the incumbent’s problem becomes

max
k∈[0,b]

(1−G(θ∗(k))) (b− k).

Proposition 3 characterizes the incumbent’s optimal reward.

Proposition 3 Suppose ai(xi) + xi is monotone, αi = α, and the incumbent uses symmetric

rewards. In equilibrium, as σ → 0, the incumbent’s choice of k converges to k∗ = max{0, k̂},

where k̂ is the unique solution to

g(θ∗(k))

1−G(θ∗(k))
(1− T ′) =

1

b− k
, k < b.

Moreover, k∗ > 0 if and only if b > b = 1
1−T ′

1−G(Td)
g(Td)

.

Example 1. Suppose θ ∼ U [−l, h], with l, h > 0 large enough to have dominance regions,

and α = 1. Then, the FOC becomes (1−T ′)(b− k∗) = h− θ∗(k) = h−Td +(1−T ′)k∗, so that

k∗ = max

{
0,

1

2

(
b− h− Td

1− T ′

)}
.

Substituting from k∗ into θ∗(k) in Proposition 2 yields

lim
σ→0

θ∗(k∗) = min

{
Td − b(1− T ′) + h

2
, Td

}
,

where the min ensures that θ∗(k∗) ≤ Td.

In the example, setting a higher bar for the incumbent within each district increases rewards
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for fraud. In contrast, increasing the fraction of districts that the incumbent must win reduce

them: ∂k∗/∂T ′ < 0 < ∂k∗/∂Td, when k∗ > 0. The intuition relies on coordination. A higher T ′

hinders coordination, because it induces the marginal agent with the threshold signal x∗ into

believing that the incumbent is less likely to win, thereby reducing the agent’s responsiveness

to rewards. This, in turn, reduces the incumbent’s marginal gains from raising rewards. Our

approach to fraud prevention builds on this observation.

2.1 Fraud-proofing

We now investigate what electoral design, i.e., what (T, T ′), minimizes election fraud and

whether there are trade-offs. We consider two notions of fraud: the probability that fraud

changes election results and the measure of fraudulent votes. The first measure follows from

Proposition 2 by recognizing that k = 0 captures settings without fraud. Computing the second

is more elaborate given the non-monotone equilibrium strategies. Nevertheless, combining (3)

with Proposition 2 allows us to calculate the expected measure of fraudulent votes.

Corollary 1 In the limit as σ → 0, the equilibrium probability that fraud changes the election

outcome, denoted by PF , is

PF = G(Td)−G(Td − (1− T ′)k∗/α).

The ex-ante measure of fraudulent votes, denoted by MF , is

MF = PF · (Td −E[θ|Td − (1− T ′)k∗/α ≤ θ ≤ Td]).

Moreover, fraud does not arise in equilibrium according to either measure, i.e., PF = MF = 0,

if and only if (1− T ′)k∗ = 0.

One way to prevent fraud is to bar the incumbent from running again. A less extreme way is

to require a super-majority for the incumbent. But the incumbent may have sufficient popular
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support to win even without fraud. Thus, we must consider whether and when a policy aimed

at preventing fraud also prevents a genuinely more popular incumbent from re-election.

Suppose absent the possibility of fraud, the optimal electoral rule is majoritarian. We first

characterize when the incumbent wins under majority rule.

Proposition 4 Suppose there is no fraud. In the limit as σ → 0, the incumbent wins the

majority of votes if θ > 0, and loses the majority of votes if θ < 0.

Can we eliminate or minimize fraud (Corollary 1) while requiring that the incumbent wins

whenever she would win absent fraud (Proposition 4)?

Proposition 5 Fix the incumbent’s payoff b from winning the election. There is a threshold

T̂ ′(b) ∈ (0, 1) such that, in the limit as σ → 0, any rule (T, T ′) with T = 1/2 and T ′ ≥ T̂ ′(b)

eliminates electoral fraud and preserves the outcome of the majority rule absent fraud. More-

over, T̂ ′(b) is increasing in b with limb→∞ T̂ ′(b) = 1.

The intuition hinges on the coordination incentives of agents. As discussed following Propo-

sition 2, the marginal agent with signal x∗ believes that the share of districts that the incumbent

will win is uniformly distributed on [0, 1]. When the incumbent needs to win more districts to

win the election, the marginal agent becomes more pessimistic about the incumbent’s chances

and hence about his own chances of receiving the promised rewards of fraud. Because it is

more expensive to motivate a more pessimistic agent, the incumbent will have less incentives

to motivate fraud. In particular, when T ′ ≈ 1, there is no fraud for almost all values of b.

Moreover, if T = 1/2 (i.e., Td = 0), the incumbent wins whenever θ > 0 for sufficiently small σ.

The following example demonstrates what would happen if a different electoral rule is used.

Example 2. Suppose α = 1 and θ ∼ U [l, h], with h > Td and l < Td − b, b ≥ 0, so that there

are dominance regions. From Example 1, there is fraud if and only if

k∗ > 0 ⇔ Td > h− b+ bT ′.
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Thus, setting Td ≤ h − b + bT ′ implies k∗ = 0. Moreover, k∗ = 0 implies θ∗ = Td. Thus, the

set of (Td, T
′) under which there is no fraud and the incumbent wins if θ > 0 and loses if θ < 0

becomes {(Td, T
′) s.t. Td = 0, T ′ ≥ 1 − h/b}. When b is small, setting Td = 0 (corresponding

to majority rule within districts) works well: in the extreme case when b = 0, an incumbent

has no incentive to induce fraud. When b is large, however, in addition to Td = 0, we must also

require T ′ ≥ T̂ ′(b) = 1− h/b. Importantly limb→∞ T̂ ′(b) = 1, so that T ′T ≈ 0.5.

A numerical specification further illustrates. Let L(x) = (Tanh(x) + 1)/2, h = 1, T ′ = 0.8,

and T = 0.625, so that the incumbent needs at least a share T ′T = 0.5 of the votes to win.

Then, Td = L−1(T ) ≈ 0.26 < h. In the limit as σ → 0, from Example 1,

k∗ = max

{
0,

1

2

(
b− 1− 0.26

0.2

)}
= max{0, 0.5b− 1.85}.

Thus, k∗ > 0 if and only if b > 3.7. And,

θ∗(k∗) = min

{
0.26− 0.2b+ 1

2
, 0.26

}
= min {0.63− 0.1b, 0.26} .

When b ≤ 3.7, there is no fraud and the incumbent wins whenever θ > 0.26. But then,

for θ ∈ (0, 0.26), the incumbent loses when she would win with majority rule absent fraud.

When b > 3.7, the incumbent wins whenever θ > 0.63 − 0.1b. Thus, when b > 6.3, for

θ ∈ (0.63− 0.1b, 0), the incumbent wins when she would lose under majority rule absent fraud.

The ex-ante probability of this event, 0.1b−0.63
1−l

, is increasing in b.

3 Conclusion

Our analysis demonstrates the value of mechanism design and coordination games in providing

policy recommendations for institutional designs to mitigate electoral fraud. We made sev-

eral simplifying assumptions; the relaxation of each provides a direction for future research.

We list them here. (1) We abstracted from heterogeneity among districts in terms of both
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complete information heterogeneity (e.g., districts can have high and low αi) and incomplete

information heterogeneity (e.g., σ need not be small). (2) We focused on a limited class of

mechanisms, among other things, by restricting the incumbent to condition an agent’s rewards

only on the outcome of that agent’s district, and not on the distribution of outcomes across

districts. (3) Our analysis suggests that having many districts is helpful for fraud prevention.

But this requires dividing a large population into many smaller groups. This seems in tension

with Madisonian view, in Federalist 10, about the advantages of a larger electorate. If so, what

is the optimal balance? (4) Any reasonably small district is likely too large for a single agent.

Within each district, agents’ actions are perfect substitutes (as in Rundlett and Svolik (2016)).

A more general model could account for coordination both within and between districts.

10



A Appendix: Revisiting Rundlett-Svolik Model

We now revisit Rundlett and Svolik’s (2016) model, correct an error in their first Proposition,

and show: when the incumbent’s payoff from winning exceeds a threshold, more “heterogeneity”

among districts reduces the probability that fraud changes the true winner. This suggests that,

all else equal, an institutional designer should consider creating electoral districts that are differ-

ent from each other—this policy may not be feasible or desirable, e.g., due to creating enclaves.

A.1 Model

There is an incumbent and a continuum of agents indexed by i ∈ [0, 1], each operating in an

electoral district i. Agents simultaneously decide whether to engage in election fraud. An agent

i’s action is denoted by ai ∈ {0, 1}, where ai = 1 if i engages in fraud, and ai = 0 otherwise.

The fraction of votes in district i is xi+aiF , for some exogenous F ∈ (0, 1/2). The incumbent’s

vote shares across the districts are correlated. In particular, xi = θ + σϵi, where ϵi ∼ U [−1, 1],

θ ∼ G, and θ and ϵis are independent from each other. Let ϕ ∈ [0, 1] be the fraction of agents

who engage in fraud, so that ϕ =
∫ 1

0
aidi. For a given θ, the incumbent’s vote share, R, is

R(θ) =

∫ 1

0

(xi + aiF )di = θ + ϕF. (A1)

The incumbent wins if and only if her vote share exceeds 1/2, that is, ϕ ≥ 1/2−θ
F

. If an agent

engages in fraud, his payoff is w(xi+F ) if the incumbent wins and −cF if the incumbent loses,

where c > 0. If an agent does not engage in fraud, his payoff is wxi if the incumbent wins and

0 if the incumbent loses. The left panel of Figure 1 depicts the payoffs. This payoff structure

is strategically equivalent to the right panel.

The incumbent ex-ante chooses w ≥ 0 to maximize her expected payoff. If the incumbent

wins, she receives a payoff b > 0. If she loses, she receives 0. The incumbent pays wR regardless

of the election outcome.
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agent i

ϕ ≥ 1/2−θ
F

ϕ < 1/2−θ
F

fraud wF + wxi −cF

no fraud wxi 0

ϕ ≥ 1/2−θ
F

ϕ < 1/2−θ
F

wF −cF

0 0

Figure 1: Rundlett and Svolik’s Fraud Game

The timing of the game is as follows. The incumbent chooses w. Nature draws θ and ϵi, i ∈

[0, 1]. Each agent i observes w and his signal xi = θ+σϵi. Agents simultaneously decide whether

to engage in fraud. The election outcome is determined, payoffs are received, and the game ends.

Rundlett and Svolik (2016) assume G = U [0, 1], putting aside that the incumbent’s vote

shares, xi or xi + F , may fall outside [0, 1].

A.2 Analysis

Consider first the game played by the agents given a value of w. Because the game is a stan-

dard global game (Morris and Shin 2003), we delegate details to the Online Appendix. The

global games approach selects a unique equilibrium when noise is sufficiently small under gen-

eral smooth prior and noise distributions. Given the uniform distributions of prior and noise,

the following assumption suffices.

Assumption A1 σ < 1
4
− F

2
.

We focus on symmetric monotone equilibria, where each agent i engages in fraud if and only

if xi ≥ x∗ for some x∗.

Proposition A1 The agents’ coordination game has a unique monotone equilibrium charac-

terized by a pair of thresholds (x∗, θ∗). In equilibrium, an agent i with signal xi engages in fraud

if and only if his signal xi ≥ x∗, and the incumbent wins if and only if θ ≥ θ∗. Moreover,

θ∗ =
1

2
− w

w + c
F and x∗ = θ∗ + σ

c− w

c+ w
.
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Thus, the incumbent’s problem is

max
w≥0

(1−G(θ∗(w)))b− w

∫
θ

R(θ;x∗(w))dG(θ)

where R(θ;x∗) = θ+ϕ(θ;x∗)F , from (A1), is the total vote share across all districts for a given θ.

Proposition A2 The optimal w∗ is

w∗ = max

{
0,

√
cF [2cF + 2(b+ 2cσ)]

2F 2 + (1 + 2σ)F + 1
− c

}
.

Moreover, limσ→0w
∗(σ) > 0 if and only if b > b∗ ≡ c

2F
(1 + F ).

Heterogeneity and Fraud Proposition A2 shows that the optimal wage reported in Rundlett

and Svolik (2016, p. 186), which we denote by w∗
RS, is incorrect. They view σ “as ‘small’ and

interpret it as a measure of heterogeneity in the incumbent’s support across precincts” (p. 184).

With this interpretation, their Proposition 1 implies that if w∗
RS > 0, then

∂w∗
RS(σ)

∂σ
> 0. Thus,

their measure of election fraud, 1/2 − θ∗, is increasing in σ (Supplementary Appendix A.4).

In fact, limσ→0w
∗
RS(σ) = 0: lower heterogeneity in the incumbent’s support across districts re-

duces the likelihood that fraud changes the true winner; and when there is little heterogeneity,

there will be almost no fraud. Proposition A3 shows that when b is large, the opposite holds.

Proposition A3 Suppose the incumbent’s office-rent is sufficiently large that she offers re-

wards for fraud: b > b∗. The rewards and the extent of fraud is decreasing in σ if and only

if the incumbent’s office-rent is sufficiently large. Formally, there exists b̂ > b∗ such that

∂w∗

∂σ
, ∂(1/2−θ∗)

∂σ
< 0 if b > b̂, but ∂w∗

∂σ
, ∂(1/2−θ∗)

∂σ
> 0 if b ∈ (b∗, b̂), where b̂ = c(1 + F + F 2)/F .
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Online Appendix: Proofs

We first prove a lemma, which will be used in the proof of Proposition 1.

Lemma 1 Let (aj(xj))j∈[0,1] be any strategy profile such that tj(xj) is weakly increasing for all

j ∈ [0, 1]. Then:

(i) (aj(xj))j∈[0,1] induces a winning probability p(x) := P (incumbent wins|xi = x) that is

continuous; weakly increasing; and strictly increasing wherever p(x) ∈ (0, 1).

(ii) (aj(xj))j∈[0,1], paired with any weakly increasing reward scheme Bi(ti), induces a best re-

sponse a∗i (xi) by agent i such that t∗i (xi) = xi + a∗i (xi) is weakly increasing.

Proof of Lemma 1: (i) By assumption, tj(xj) := xj + aj(xj) is weakly increasing in xj for

all j. Moreover, xj = θ + σϵj is FOSD-increasing in θ for all j. Thus tj = tj(xj) is weakly

FOSD-increasing in θ. In particular, P (tj ≥ Td|θ) is weakly increasing in θ for all j. Moreover,

P (tj ≥ Td|θ) is a continuous function of θ because P (xj ≥ x|θ) = 1− F
(
x−θ
σ

)
is continuous in

θ for any x. Then the incumbent’s share of districts,

m(θ; (aj(·))j∈[0,1]) :=
∫ 1

0

P (xj + aj(xj) ≥ Td|θ)dj,

is weakly increasing and continuous in θ. Then there is θ∗ such that the incumbent wins if and

only if θ ≥ θ∗, where θ∗ is such that
∫ 1

0
P (tj ≥ Td|θ = θ∗)dj = T ′. Then

p(x) = P (θ ≥ θ∗|xi = x) =

∫∞
θ∗

g(θ)f
(
x−θ
σ

)
1
σ
dθ∫∞

−∞ g(θ)f
(
x−θ
σ

)
1
σ
dθ

,

which is continuous in x. Moreover, because f is log-concave, the density h(θ|xi = x) ∝

g(θ)f
(
x−θ
σ

)
is MLRP-increasing in x. Hence θ|xi = x is FOSD-increasing in x, so p(x) is

weakly increasing in x. Furthermore, because h(θ|xi = x) must be increasing in a neighbor-

hood of θ = x− σ inf(suppf) and decreasing in a neighborhood of θ = x− σ sup(suppf), p(x)
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must be strictly increasing in a neighborhood of x unless x−σ inf(suppf) and x−σ sup(suppf)

are on the same side of θ∗, i.e., unless p(x) = 0 or p(x) = 1.

(ii) Suppose t∗i (xi) > t∗i (x
′
i) for some xi < x′

i. Then

p(xi)Bi(t
∗
i (xi))− αi(t

∗
i (xi)− xi) ≥ p(xi)Bi(t

∗
i (x

′
i))− αi(t

∗
i (x

′
i)− xi)

p(x′
i)Bi(t

∗
i (x

′
i))− αi(t

∗
i (x

′
i)− x′

i) ≥ p(x′
i)Bi(t

∗
i (xi))− αi(t

∗
i (xi)− x′

i)

=⇒ [p(xi)− p(x′
i)] [Bi(t

∗
i (xi))−Bi(t

∗
i (x

′
i))] ≥ 0.

If p(xi) = p(x′
i) = 0, there is no fraud in either case, so t∗i (xi) = xi < x′

i = t∗i (x
′
i), a contradiction.

If p(xi) = p(x′
i) = 1, then the two inequalities imply that t∗i (xi) and t∗i (x

′
i) are both optimal

when facing either signal value, xi or x′
i. Our assumption that the agent chooses the higher

action when indifferent then implies that t∗i (xi) should be chosen in both cases, contradicting

that t∗i (x
′
i) < t∗i (xi). Finally, if p(xi) and p(x′

i) are not both equal to 0 or 1, part (i) implies that

p(xi) < p(x′
i). Since Bi is weakly increasing and Bi(t

∗
i (xi))−Bi(t

∗
i (x

′
i)) ≤ 0, we have Bi(t

∗
i (xi)) =

Bi(t
∗
i (x

′
i)). But then t∗i (x

′
i) would be strictly better for the agent than t∗i (xi), a contradiction. □

Proof of Proposition 1: We will show that, for any optimal reward scheme B = (Bi)i∈I (not

necessarily with Bi a step function for each i), there is a reward scheme B̃ composed of step

functions B̃i = ki1{ti≥Td} which is weakly better for the incumbent than B. We will do this by

constructing B̃i that induces equivalent equilibrium behavior by all agents, while being weakly

cheaper for the incumbent.

Let p(x) be the incumbent’s winning probability conditional on a signal realization xi = x

and the equilibrium strategies ai(xi) that the agents choose in response to the reward scheme

B, where we denote t∗i (xi) = xi + ai(xi). Since t∗i (xi) is weakly increasing in xi by assumption,

there is for each i a unique x∗
i such that t∗i (xi) ≥ Td (and hence the incumbent wins district i)

iff xi ≥ x∗
i . Moreover, p is continuously increasing by Lemma 1.

Suppose now that agent i’s reward scheme is changed to a step function B̃i = ki1{ti≥Td}, while

other agents’ schemes and behavior remain unchanged. As shown in the text (equations (2) and

2



(3)), i’s best response t̃i(xi) will be such that there is a threshold x̃i such that t̃i(xi) ≥ Td iff xi ≥

x̃i, where x̃i is the unique solution to p(x)ki−αi(Td−x) = 0. (Note that a unique x solves this

equation because the left-hand side is strictly and continuously increasing in x, as guaranteed

by Lemma 1.) Set ki =
αi(Td−x∗

i )

p(x∗
i )

. Then, by construction, x̃i = x∗
i : i’s best response to B̃i is such

that the incumbent wins district i exactly in the same set of cases under both reward schemes.

Define B̃ = (B̃i)i∈[0,1] with B̃i = ki1{ti≥Td} and ki =
αi(Td−x∗

i )

p(x∗
i )

. Our next observation is that,

if the incumbent offers the reward scheme B̃i (rather than Bi) to all agents i, it is an equilibrium

for each agent i to play as per (3), with threshold x∗
i . Indeed, if they do, the incumbent wins

exactly the same set of districts as under the strategy profile (ai(xi))i∈[0,1], so the function p

remains unchanged, and hence the agents indeed find it optimal to set x̃i = x∗
i . In other words,

the game induced by B̃ has an equilibrium that leads to equivalent electoral outcomes to those

of the original equilibrium strategy profile (ai(xi))i∈[0,1].

Finally we check that the incumbent pays weakly less under B̃ than under B. For any

xi < x∗
i , the incumbent pays 0 to i under B̃i and Bi(xi + ai(xi)) ≥ 0 under Bi. For any

xi ≥ x∗
i , the incumbent pays ki under B̃i. She pays at least as much under Bi because, under

Bi, x
∗
i + ai(x

∗
i ) ≥ Td, so

p(x∗
i )Bi(x

∗
i + ai(x

∗
i ))− αi(Td − x∗

i ) ≥ p(x∗
i )Bi(x

∗
i + ai(x

∗
i ))− αiai(x

∗
i ) ≥ p(x∗

i )Bi(x
∗
i ) ≥ 0

whereas ki satisfies p(x
∗
i )ki − αi(Td − x∗

i ) = 0 by construction. Thus Bi(x
∗
i + ai(x

∗
i )) ≥ ki and

Bi(xi + ai(xi)) ≥ ki for any xi ≥ x∗
i by the monotonicity of Bi and t∗i . □

Proof of Proposition 2: Our analysis in the text before Proposition 2 shows: when the

incumbent’s reward scheme takes the form Bi(ti) = ki ·1{ti≥Td}, the belief consistency condition

(equation (4)) becomes

T ′ =

∫ 1

0

Pr(xi ≥ x∗
i |θ∗)di

3



and individual rationality condition (equation (2)) becomes

Td = Pr(θ ≥ θ∗|xi = x∗
i ) ki/αi + x∗

i .

In the symmetric case where ki = k and αi = α, these conditions become

T ′ = Pr(xi ≥ x∗
i |θ = θ∗)

Td = Pr(θ ≥ θ∗|xi = x∗
i ) k/α+ x∗

i .

These, in turn, imply x∗
i = x∗. Thus, these equilibrium conditions become

T ′ = Pr(xi ≥ x∗|θ = θ∗)

Td = Pr(θ ≥ θ∗|xi = x∗) k/α+ x∗,

which can be further rewritten as

T ′ = 1− F

(
x∗ − θ∗

σ

)
(A1)

Td =

∫∞
θ∗

f
(
x∗−θ
σ

)
g(θ)dθ∫∞

−∞ f
(
x∗−θ
σ

)
g(θ)dθ

k

α
+ x∗. (A2)

Moreover, for small enough σ > 0, these equations pin down a unique solution (x∗(k;σ), θ∗(k;σ)),

which converges to the limit values (x∗(k); θ∗(k)) given in the Proposition as σ → 0. The argu-

ment is standard (Morris and Shin 2003). Let ∆ = x∗−θ∗

σ
, so that x∗ = θ∗ + σ∆ and equation

(A1) becomes T ′ = 1 − F (∆). Thus, ∆ = F−1(1 − T ′) ∈ R is a constant. A solution of the

system (A1)-(A2) then corresponds to a value of θ∗ such that

∫∞
θ∗

f
(
θ∗−θ
σ

+∆
)
g(θ)dθ∫∞

−∞ f
(
θ∗−θ
σ

+∆
)
g(θ)dθ

k

α
+ θ∗ + σ∆ = Td.
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Letting z = θ−θ∗

σ
, the above equation becomes

∫∞
0

f (∆− z) g(θ∗ + σz)dz∫∞
−∞ f (∆− z) g(θ∗ + σz)dz

k

α
+ θ∗ + σ∆ = Td. (A3)

For the uniqueness, it is enough to show that the left-hand side is strictly increasing in θ∗ for

σ > 0 small enough. This follows from the fact that the left-hand side is a smooth function of θ∗

and σ ≥ 0, and at σ = 0, it takes the value F (∆) k
α
+θ∗, with derivative 1 > 0 with respect to θ∗.

From the definition of ∆, equation (A3) has a unique solution at σ = 0

θ∗ = Td − F (∆) k/α = Td − (1− T ′)k/α.

Thus, at σ = 0, x∗ = θ∗ = Td − (1 − T ′)k/α. That θ∗(k;σ), x∗(k;σ) converge to this limit as

σ → 0 follows because the left-hand side of (A3) is continuous in σ. □

Proof of Proposition 3: First, consider the incumbent’s problem directly in the limit case

σ = 0. Letting k̂ be the interior optimal reward, k̂ must satisfy the FOC: g(θ∗(k̂))

1−G(θ∗(k̂))
(1−T ′) = 1

b−k̂
.

If g is log-concave, then so are G and 1−G (An 1998, Lemma 3). In particular, since 1−G(x)

is log-concave in x, (log(1 − G(x)))′ = −g(x)
1−G(x)

is decreasing in x, so g(x)
1−G(x)

is increasing in x.

Then the left hand side of the FOC is decreasing in k̂, since θ∗(k) is decreasing in k (Proposition

2). The right hand side of the FOC is increasing in k̂ ∈ [0, b), approaching ∞ as k̂ → b−. An

interior solution requires b to be sufficiently large so that g(Td)
1−G(Td)

(1− T ′) > 1
b
.

For σ > 0, the incumbent’s objective is

b(1−G(θ∗(k;σ)))− k

∫ ∞

θ∗(k;σ)

(
1− F

(
x∗(k; θ)− θ

σ

))
g(θ)dθ

which by the change of variables θ = θ∗ + σν, and writing x∗ = θ∗ + σ∆, equals

b(1−G(θ∗(k;σ)))− k

∫ ∞

θ∗(k;σ)

(1− F (∆− ν)) g(θ∗(k;σ) + σν)σdν. (A4)
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Our proof of Proposition 2 implies that θ∗(k;σ) is a continuous function of (k, σ); the same

is then true of (A4). Then an optimum k∗(σ) exists for each σ, and any sequence of optimal

k∗(σ) as σ → 0 must accumulate at the unique optimum k∗. □

Proof of Corollary 1: From Proposition 2, with election fraud, the incumbent wins with prob-

ability 1−G(Td − (1− T ′)k∗/α); without election fraud, she wins with probability 1−G(Td).

The measure of fraudulent votes can be obtained from equation (3):

lim
σ→0

∫ ∞

−∞
a∗(xi;σ)pdf(xi|θ, σ)dxi = lim

σ→0

∫ Td

x∗(σ)

(Td − xi)pdf(xi|θ, σ)dxi

=


0 if θ < limσ→0 θ

∗(σ)

Td − θ if limσ→0 θ
∗(σ) < θ < Td

0 if Td < θ

This, combined with Proposition 2, implies that the ex-ante measure of fraudulent votes, eval-

uated at k = k∗, is

∫ Td

Td−(1−T ′)k∗/α

(Td−θ)dG(θ) = (G(Td)−G(Td−(1−T ′)k∗/α)) (Td−E[θ|Td−(1−T ′)k∗/α ≤ θ ≤ Td])

□

Proof of Proposition 4: Absent fraud, the incumbent’s total vote share conditional on θ is

lim
σ→0

∫
xi

L(xi)pdf(xi|θ)dxi = lim
σ→0

∫
ϵi

L(θ + σϵi)dF (ϵi) = L(θ)

The result follows because L(x) is strictly increasing and, from Assumption 1, L(0) = 1/2. □

Proof of Proposition 5: Set T̂ ′(b) = 1− 1
b
1−G(Td)
g(Td)

. For any T ′ ≥ T̂ ′(b), we have limσ→0 k
∗(σ) =

0 by Proposition 3. Hence electoral fraud is eliminated in the limit as σ → 0. Moreover, Propo-

sition 2 yields that limσ→0 θ
∗(k∗(σ);σ) = Td − (1 − T ′) limσ→0

k∗(σ)
α

= Td. Since T = 0.5, we

have Td = 0, so θ∗(k∗(σ);σ) → 0 as σ → 0, and the majoritarian outcome is preserved.
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Finally we note that any threshold T̂ ′(b) satisfying the given conditions must approach 1 as

b → ∞. Suppose otherwise, so there is a sequence bn → ∞ such that T̂ ′(bn) ≤ 1 − η for all n

and a fixed η > 0. Then, for n large enough, we obtain bn > b = 1
η
1−G(Td)
g(Td)

leading to k∗ > 0 by

Proposition 3, and positive fraud by Corollary 1, a contradiction. □

Proof of Proposition A1: Suppose w > 0. Because F ∈ (0, 1/2), there are both upper

and lower dominance regions. If θ > 1/2, under complete information, agents have a strictly

dominant strategy to engage in fraud. If θ < 1/2−F , under complete information, agents have

a strictly dominant strategy not to engage in fraud.

Assumption A1 ensures that x∗ ∈ (σ, 1−σ). If x∗ ≤ σ, then the upper bound of θ conditional

on xi = x∗ is x∗+σ ≤ 2σ < 1/2−F . Thus, for xi > x∗ sufficiently close to x∗, agent i’s unique

best response is not to engage in fraud, contradicting what the strategy prescribes. Similarly, if

x∗ ≥ 1−σ, then the lower bound of θ conditional on xi = x∗ is x∗−σ ≥ 1−2σ > 1/2+F > 1/2.

Thus, for xi < x∗ close to x∗, agent i would strictly prefer to engage in fraud, contradicting

what the strategy prescribes.

Given a state θ and a strategy cutoff x∗, the measure of agents who engage in fraud is

ϕ(θ) = Pr(xi ≥ x∗|θ). (A5)

This is increasing in θ. Moreover, 1/2−θ
F

is strictly decreasing in θ. Thus, there exists a unique

θ∗ ∈ (0, 1/2) such that

ϕ(θ∗) = Pr(xi ≥ x∗|θ = θ∗) =
1/2− θ∗

F
(belief consistency) (A6)

An agent i’s net payoff from engaging in fraud versus not is Pr(θ ≥ θ∗|xi)wF−Pr(θ < θ∗|xi)cF .

This is continuous and increasing in xi. Moreover, the dominance regions ensure that it is neg-

ative when xi is sufficiently low and positive when xi is sufficiently high. Thus, there exists a
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threshold signal x∗ that makes the agent with signal xi = x∗ indifferent:

Pr(θ ≥ θ∗|xi = x∗) =
c

c+ w
(individual rationality) (A7)

Thus, any pair (x∗, θ∗) that satisfies belief consistency (A6) and individual rationality (A7)

constitutes an equilibrium.

The following statistical property simplifies the analysis.

Lemma 2 Suppose x = θ + σϵ, with θ ∼ U [θ, θ] and ϵ ∼ U [−1, 1], where θ and ϵ are indepen-

dent, θ > θ and σ > 0. Fix a pair of thresholds (θ̂, x̂) ∈ [θ, θ]× (θ + σ, θ − σ). Then,

Pr(xi ≤ x̂|θ = θ̂) = Pr(θ ≥ θ̂|xi = x̂)

Combining Lemma 2 with (A6) and (A7) yields

ϕ(θ∗) =
1/2− θ∗

F
=

w

w + c
⇔ θ∗ =

1

2
− w

w + c
F (A8)

From (A8) and (A6),

Pr(xi ≥ x∗|θ = θ∗) =
1/2− θ∗

F
=

w

w + c

Thus, θ∗+σ−x∗

2σ
= w

w+c
, i.e.,

x∗ = θ∗ + σ
c− w

c+ w
.

The proof also shows that (x∗, θ∗) is unique.

If w = 0, agents have a dominant strategy not to engage in fraud unless they believe that

the incumbent surely wins, in which case they are indifferent. In any equilibrium, θ∗ = 1/2. □

Proof of Proposition A2: Given our distributional assumptions, and the fact that x∗ ∈
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(σ, 1− σ), the incumbent’s problem simplifies to

max
w≥0

(1− θ∗(w))b− w

(
1

2
+ F

∫ x∗(w)+σ

x∗(w)−σ

θ + σ − x∗(w)

2σ
dθ + F

∫ 1

x∗(w)+σ

dθ

)

That is,

max
w≥0

(1− θ∗(w))b− w

2
− wF (1− x∗(w)) (A9)

Substituting from Proposition A1 into (A9), the objective function becomes

(
1

2
+

w

w + c
F

)
b− w

2
− wF

(
1

2
+

w

w + c
F − σ

c− w

c+ w

)
.

If the optimal w is interior, it must satisfy the first-order condition

0 = bF
c

(c+ w)2
− 1

2
− F

(
1

2
+

w

w + c
F − σ

c− w

c+ w

)
− wF

(
c

(c+ w)2
F + σ

2c

(c+ w)2

)
⇔ 0 = bFc− 1 + F

2
(c+ w)2 − wF 2(c+ w) + Fσ(c− w)(c+ w)− wF (cF + 2σc)

⇔ 0 = w2

(
−1 + F

2
− F 2 − Fσ

)
+ w

(
−(1 + F )c− F 2c− F (cF + 2σc)

)
+ bFc− 1 + F

2
c2 + Fσc2

⇔ 0 = w2 + 2cw −
bFc− 1+F

2
c2 + Fσc2

1+F
2

+ F 2 + Fσ

which yields

ŵ = −c±

√
c2 +

bFc− 1+F
2

c2 + Fσc2

1+F
2

+ F 2 + Fσ
= −c±

√
bFc+ F 2c2 + 2Fσc2

1+F
2

+ F 2 + Fσ
(A10)

The lower solution is always negative and hence is not feasible. Moreover, the first deriva-

tive of the objective function converges to −1+F
2

− F 2 − Fσ < 0 as w → +∞, and the second

derivative is −2cF (b+c(F+2σ))
(c+w)3

< 0 for all w ≥ 0. Hence the objective function is maximized at

a finite w, and any feasible interior solution to the FOC is a global maximum. It follows that

the optimum is ŵ+ when it is positive, and 0 otherwise. □
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Proof of Proposition A3: Differentiating w∗ in Proposition A1 with respect to σ yields

∂w∗

∂σ
=

√
2c2F 2(−bF + c(1 + F + F 2))(b+ c(F + 2σ))

(cF (1 + F + 2F 2 + 2Fσ)(b+ c(F + 2σ)))3/2

Thus,

∂w∗

∂σ
> 0 ⇔ b > b̂ =

c

F
(1 + F + F 2) >

c

2F
(1 + F ) = b∗

Moreover, from Proposition A1, the probability that fraud changes the outcome of the election

is 1/2− θ∗ = w
w+c

F , which is increasing in w. □
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